DUNE PDELab (git)

matrixhierarchy.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: Copyright © DUNE Project contributors, see file LICENSE.md in module root
2// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
3// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
4// vi: set et ts=4 sw=2 sts=2:
5#ifndef DUNE_AMG_MATRIXHIERARCHY_HH
6#define DUNE_AMG_MATRIXHIERARCHY_HH
7
8#include <algorithm>
9#include <tuple>
10#include "aggregates.hh"
11#include "graph.hh"
12#include "galerkin.hh"
13#include "renumberer.hh"
14#include "graphcreator.hh"
15#include "hierarchy.hh"
16#include <dune/istl/bvector.hh>
27
28namespace Dune
29{
30 namespace Amg
31 {
42 enum {
50 MAX_PROCESSES = 72000
51 };
52
59 template<class M, class PI, class A=std::allocator<M> >
61 {
62 public:
64 typedef M MatrixOperator;
65
67 typedef typename MatrixOperator::matrix_type Matrix;
68
71
73 typedef A Allocator;
74
77
80
83
85 using AAllocator = typename std::allocator_traits<Allocator>::template rebind_alloc<AggregatesMap*>;
86
88 typedef std::list<AggregatesMap*,AAllocator> AggregatesMapList;
89
91 typedef RedistributeInformation<ParallelInformation> RedistributeInfoType;
92
94 using RILAllocator = typename std::allocator_traits<Allocator>::template rebind_alloc<RedistributeInfoType>;
95
97 typedef std::list<RedistributeInfoType,RILAllocator> RedistributeInfoList;
98
104 MatrixHierarchy(std::shared_ptr<MatrixOperator> fineMatrix,
105 std::shared_ptr<ParallelInformation> pinfo = std::make_shared<ParallelInformation>());
106
108
114 template<typename O, typename T>
115 void build(const T& criterion);
116
124 template<class F>
125 void recalculateGalerkin(const F& copyFlags);
126
131 template<class V, class BA, class TA>
132 void coarsenVector(Hierarchy<BlockVector<V,BA>, TA>& hierarchy) const;
133
139 template<class S, class TA>
140 void coarsenSmoother(Hierarchy<S,TA>& smoothers,
141 const typename SmootherTraits<S>::Arguments& args) const;
142
147 std::size_t levels() const;
148
153 std::size_t maxlevels() const;
154
155 bool hasCoarsest() const;
156
161 bool isBuilt() const;
162
167 const ParallelMatrixHierarchy& matrices() const;
168
174
179 const AggregatesMapList& aggregatesMaps() const;
180
187
188 double getProlongationDampingFactor() const
189 {
190 return prolongDamp_;
191 }
192
203 void getCoarsestAggregatesOnFinest(std::vector<std::size_t>& data) const;
204
205 private:
206 typedef typename ConstructionTraits<MatrixOperator>::Arguments MatrixArgs;
207 typedef typename ConstructionTraits<ParallelInformation>::Arguments CommunicationArgs;
209 AggregatesMapList aggregatesMaps_;
211 RedistributeInfoList redistributes_;
213 ParallelMatrixHierarchy matrices_;
215 ParallelInformationHierarchy parallelInformation_;
216
218 bool built_;
219
221 int maxlevels_;
222
223 double prolongDamp_;
224
228 template<class Matrix, bool print>
229 struct MatrixStats
230 {
231
235 static void stats([[maybe_unused]] const Matrix& matrix)
236 {}
237 };
238
239 template<class Matrix>
240 struct MatrixStats<Matrix,true>
241 {
242 struct calc
243 {
244 typedef typename Matrix::size_type size_type;
245 typedef typename Matrix::row_type matrix_row;
246
247 calc()
248 {
250 max=0;
251 sum=0;
252 }
253
254 void operator()(const matrix_row& row)
255 {
256 min=std::min(min, row.size());
257 max=std::max(max, row.size());
258 sum += row.size();
259 }
260
261 size_type min;
262 size_type max;
263 size_type sum;
264 };
268 static void stats(const Matrix& matrix)
269 {
270 calc c= for_each(matrix.begin(), matrix.end(), calc());
271 dinfo<<"Matrix row: min="<<c.min<<" max="<<c.max
272 <<" average="<<static_cast<double>(c.sum)/matrix.N()
273 <<std::endl;
274 }
275 };
276 };
277
281 template<class T>
282 class CoarsenCriterion : public T
283 {
284 public:
290
304 CoarsenCriterion(int maxLevel=100, int coarsenTarget=1000, double minCoarsenRate=1.2,
305 double prolongDamp=1.6, AccumulationMode accumulate=successiveAccu, bool useFixedOrder = false)
306 : AggregationCriterion(Dune::Amg::Parameters(maxLevel, coarsenTarget, minCoarsenRate, prolongDamp, accumulate, useFixedOrder))
307 {}
308
310 : AggregationCriterion(parms)
311 {}
312
313 };
314
315 template<typename M, typename C1>
316 bool repartitionAndDistributeMatrix([[maybe_unused]] const M& origMatrix,
317 [[maybe_unused]] std::shared_ptr<M> newMatrix,
318 [[maybe_unused]] SequentialInformation& origComm,
319 [[maybe_unused]] std::shared_ptr<SequentialInformation>& newComm,
320 [[maybe_unused]] RedistributeInformation<SequentialInformation>& ri,
321 [[maybe_unused]] int nparts,
322 [[maybe_unused]] C1& criterion)
323 {
324 DUNE_THROW(NotImplemented, "Redistribution does not make sense in sequential code!");
325 }
326
327
328 template<typename M, typename C, typename C1>
329 bool repartitionAndDistributeMatrix(const M& origMatrix,
330 std::shared_ptr<M> newMatrix,
331 C& origComm,
332 std::shared_ptr<C>& newComm,
333 RedistributeInformation<C>& ri,
334 int nparts, C1& criterion)
335 {
336 Timer time;
337#ifdef AMG_REPART_ON_COMM_GRAPH
338 // Done not repartition the matrix graph, but a graph of the communication scheme.
339 bool existentOnRedist=Dune::commGraphRepartition(origMatrix, origComm, nparts, newComm,
340 ri.getInterface(),
341 criterion.debugLevel()>1);
342
343#else
344 typedef Dune::Amg::MatrixGraph<const M> MatrixGraph;
345 typedef Dune::Amg::PropertiesGraph<MatrixGraph,
346 VertexProperties,
347 EdgeProperties,
348 IdentityMap,
349 IdentityMap> PropertiesGraph;
350 MatrixGraph graph(origMatrix);
351 PropertiesGraph pgraph(graph);
352 buildDependency(pgraph, origMatrix, criterion, false);
353
354#ifdef DEBUG_REPART
355 if(origComm.communicator().rank()==0)
356 std::cout<<"Original matrix"<<std::endl;
357 origComm.communicator().barrier();
358 printGlobalSparseMatrix(origMatrix, origComm, std::cout);
359#endif
360 bool existentOnRedist=Dune::graphRepartition(pgraph, origComm, nparts,
361 newComm, ri.getInterface(),
362 criterion.debugLevel()>1);
363#endif // if else AMG_REPART
364
365 if(origComm.communicator().rank()==0 && criterion.debugLevel()>1)
366 std::cout<<"Repartitioning took "<<time.elapsed()<<" seconds."<<std::endl;
367
368 ri.setSetup();
369
370#ifdef DEBUG_REPART
371 ri.checkInterface(origComm.indexSet(), newComm->indexSet(), origComm.communicator());
372#endif
373
374 redistributeMatrix(const_cast<M&>(origMatrix), *newMatrix, origComm, *newComm, ri);
375
376#ifdef DEBUG_REPART
377 if(origComm.communicator().rank()==0)
378 std::cout<<"Original matrix"<<std::endl;
379 origComm.communicator().barrier();
380 if(newComm->communicator().size()>0)
381 printGlobalSparseMatrix(*newMatrix, *newComm, std::cout);
382 origComm.communicator().barrier();
383#endif
384
385 if(origComm.communicator().rank()==0 && criterion.debugLevel()>1)
386 std::cout<<"Redistributing matrix took "<<time.elapsed()<<" seconds."<<std::endl;
387 return existentOnRedist;
388
389 }
390
391 template<class M, class IS, class A>
392 MatrixHierarchy<M,IS,A>::MatrixHierarchy(std::shared_ptr<MatrixOperator> fineMatrix,
393 std::shared_ptr<ParallelInformation> pinfo)
394 : matrices_(fineMatrix),
395 parallelInformation_(pinfo)
396 {
397 if (SolverCategory::category(*fineMatrix) != SolverCategory::category(*pinfo))
398 DUNE_THROW(ISTLError, "MatrixOperator and ParallelInformation must belong to the same category!");
399 }
400
401 template<class M, class IS, class A>
402 template<typename O, typename T>
403 void MatrixHierarchy<M,IS,A>::build(const T& criterion)
404 {
405 prolongDamp_ = criterion.getProlongationDampingFactor();
406 typedef O OverlapFlags;
407 typedef typename ParallelMatrixHierarchy::Iterator MatIterator;
408 typedef typename ParallelInformationHierarchy::Iterator PInfoIterator;
409
410 static const int noints=(Dune::Amg::MAX_PROCESSES/4096>0) ? (Dune::Amg::MAX_PROCESSES/4096) : 1;
411
412 typedef bigunsignedint<sizeof(int)*8*noints> BIGINT;
413 GalerkinProduct<ParallelInformation> productBuilder;
414 MatIterator mlevel = matrices_.finest();
415 MatrixStats<typename M::matrix_type,MINIMAL_DEBUG_LEVEL<=INFO_DEBUG_LEVEL>::stats(mlevel->getmat());
416
417 PInfoIterator infoLevel = parallelInformation_.finest();
418 BIGINT finenonzeros=countNonZeros(mlevel->getmat());
419 finenonzeros = infoLevel->communicator().sum(finenonzeros);
420 BIGINT allnonzeros = finenonzeros;
421
422
423 int level = 0;
424 int rank = 0;
425
426 BIGINT unknowns = mlevel->getmat().N();
427
428 unknowns = infoLevel->communicator().sum(unknowns);
429 double dunknowns=unknowns.todouble();
430 infoLevel->buildGlobalLookup(mlevel->getmat().N());
431 redistributes_.push_back(RedistributeInfoType());
432
433 for(; level < criterion.maxLevel(); ++level, ++mlevel) {
434 assert(matrices_.levels()==redistributes_.size());
435 rank = infoLevel->communicator().rank();
436 if(rank==0 && criterion.debugLevel()>1)
437 std::cout<<"Level "<<level<<" has "<<dunknowns<<" unknowns, "<<dunknowns/infoLevel->communicator().size()
438 <<" unknowns per proc (procs="<<infoLevel->communicator().size()<<")"<<std::endl;
439
440 MatrixOperator* matrix=&(*mlevel);
441 ParallelInformation* info =&(*infoLevel);
442
443 if((
444#if HAVE_PARMETIS
445 criterion.accumulate()==successiveAccu
446#else
447 false
448#endif
449 || (criterion.accumulate()==atOnceAccu
450 && dunknowns < 30*infoLevel->communicator().size()))
451 && infoLevel->communicator().size()>1 &&
452 dunknowns/infoLevel->communicator().size() <= criterion.coarsenTarget())
453 {
454 // accumulate to fewer processors
455 std::shared_ptr<Matrix> redistMat = std::make_shared<Matrix>();
456 std::shared_ptr<ParallelInformation> redistComm;
457 std::size_t nodomains = (std::size_t)std::ceil(dunknowns/(criterion.minAggregateSize()
458 *criterion.coarsenTarget()));
459 if( nodomains<=criterion.minAggregateSize()/2 ||
460 dunknowns <= criterion.coarsenTarget() )
461 nodomains=1;
462
463 bool existentOnNextLevel =
464 repartitionAndDistributeMatrix(mlevel->getmat(), redistMat, *infoLevel,
465 redistComm, redistributes_.back(), nodomains,
466 criterion);
467 BIGINT unknownsRedist = redistMat->N();
468 unknownsRedist = infoLevel->communicator().sum(unknownsRedist);
469 dunknowns= unknownsRedist.todouble();
470 if(redistComm->communicator().rank()==0 && criterion.debugLevel()>1)
471 std::cout<<"Level "<<level<<" (redistributed) has "<<dunknowns<<" unknowns, "<<dunknowns/redistComm->communicator().size()
472 <<" unknowns per proc (procs="<<redistComm->communicator().size()<<")"<<std::endl;
473 MatrixArgs args(redistMat, *redistComm);
474 mlevel.addRedistributed(ConstructionTraits<MatrixOperator>::construct(args));
475 assert(mlevel.isRedistributed());
476 infoLevel.addRedistributed(redistComm);
477 infoLevel->freeGlobalLookup();
478
479 if(!existentOnNextLevel)
480 // We do not hold any data on the redistributed partitioning
481 break;
482
483 // Work on the redistributed Matrix from now on
484 matrix = &(mlevel.getRedistributed());
485 info = &(infoLevel.getRedistributed());
486 info->buildGlobalLookup(matrix->getmat().N());
487 }
488
489 rank = info->communicator().rank();
490 if(dunknowns <= criterion.coarsenTarget())
491 // No further coarsening needed
492 break;
493
494 typedef PropertiesGraphCreator<MatrixOperator,ParallelInformation> GraphCreator;
495 typedef typename GraphCreator::PropertiesGraph PropertiesGraph;
496 typedef typename GraphCreator::GraphTuple GraphTuple;
497
498 typedef typename PropertiesGraph::VertexDescriptor Vertex;
499
500 std::vector<bool> excluded(matrix->getmat().N(), false);
501
502 GraphTuple graphs = GraphCreator::create(*matrix, excluded, *info, OverlapFlags());
503
504 AggregatesMap* aggregatesMap=new AggregatesMap(std::get<1>(graphs)->maxVertex()+1);
505
506 aggregatesMaps_.push_back(aggregatesMap);
507
508 Timer watch;
509 watch.reset();
510 auto [noAggregates, isoAggregates, oneAggregates, skippedAggregates] =
511 aggregatesMap->buildAggregates(matrix->getmat(), *(std::get<1>(graphs)), criterion, level==0);
512
513 if(rank==0 && criterion.debugLevel()>2)
514 std::cout<<" Have built "<<noAggregates<<" aggregates totally ("<<isoAggregates<<" isolated aggregates, "<<
515 oneAggregates<<" aggregates of one vertex, and skipped "<<
516 skippedAggregates<<" aggregates)."<<std::endl;
517#ifdef TEST_AGGLO
518 {
519 // calculate size of local matrix in the distributed direction
520 int start, end, overlapStart, overlapEnd;
521 int procs=info->communicator().rank();
522 int n = UNKNOWNS/procs; // number of unknowns per process
523 int bigger = UNKNOWNS%procs; // number of process with n+1 unknowns
524
525 // Compute owner region
526 if(rank<bigger) {
527 start = rank*(n+1);
528 end = (rank+1)*(n+1);
529 }else{
530 start = bigger + rank * n;
531 end = bigger + (rank + 1) * n;
532 }
533
534 // Compute overlap region
535 if(start>0)
536 overlapStart = start - 1;
537 else
538 overlapStart = start;
539
540 if(end<UNKNOWNS)
541 overlapEnd = end + 1;
542 else
543 overlapEnd = end;
544
545 assert((UNKNOWNS)*(overlapEnd-overlapStart)==aggregatesMap->noVertices());
546 for(int j=0; j< UNKNOWNS; ++j)
547 for(int i=0; i < UNKNOWNS; ++i)
548 {
549 if(i>=overlapStart && i<overlapEnd)
550 {
551 int no = (j/2)*((UNKNOWNS)/2)+i/2;
552 (*aggregatesMap)[j*(overlapEnd-overlapStart)+i-overlapStart]=no;
553 }
554 }
555 }
556#endif
557 if(criterion.debugLevel()>1 && info->communicator().rank()==0)
558 std::cout<<"aggregating finished."<<std::endl;
559
560 BIGINT gnoAggregates=noAggregates;
561 gnoAggregates = info->communicator().sum(gnoAggregates);
562 double dgnoAggregates = gnoAggregates.todouble();
563#ifdef TEST_AGGLO
564 BIGINT gnoAggregates=((UNKNOWNS)/2)*((UNKNOWNS)/2);
565#endif
566
567 if(criterion.debugLevel()>2 && rank==0)
568 std::cout << "Building "<<dgnoAggregates<<" aggregates took "<<watch.elapsed()<<" seconds."<<std::endl;
569
570 if(dgnoAggregates==0 || dunknowns/dgnoAggregates<criterion.minCoarsenRate())
571 {
572 if(rank==0)
573 {
574 if(dgnoAggregates>0)
575 std::cerr << "Stopped coarsening because of rate breakdown "<<dunknowns<<"/"<<dgnoAggregates
576 <<"="<<dunknowns/dgnoAggregates<<"<"
577 <<criterion.minCoarsenRate()<<std::endl;
578 else
579 std::cerr<< "Could not build any aggregates. Probably no connected nodes."<<std::endl;
580 }
581 aggregatesMap->free();
582 delete aggregatesMap;
583 aggregatesMaps_.pop_back();
584
585 if(criterion.accumulate() && mlevel.isRedistributed() && info->communicator().size()>1) {
586 // coarse level matrix was already redistributed, but to more than 1 process
587 // Therefore need to delete the redistribution. Further down it will
588 // then be redistributed to 1 process
589 delete &(mlevel.getRedistributed().getmat());
590 mlevel.deleteRedistributed();
591 delete &(infoLevel.getRedistributed());
592 infoLevel.deleteRedistributed();
593 redistributes_.back().resetSetup();
594 }
595
596 break;
597 }
598 unknowns = noAggregates;
599 dunknowns = dgnoAggregates;
600
601 CommunicationArgs commargs(info->communicator(),info->category());
602 parallelInformation_.addCoarser(commargs);
603
604 ++infoLevel; // parallel information on coarse level
605
607 get(VertexVisitedTag(), *(std::get<1>(graphs)));
608
609 watch.reset();
610 int aggregates = IndicesCoarsener<ParallelInformation,OverlapFlags>
611 ::coarsen(*info,
612 *(std::get<1>(graphs)),
613 visitedMap,
614 *aggregatesMap,
615 *infoLevel,
616 noAggregates,
617 criterion.useFixedOrder());
618 GraphCreator::free(graphs);
619
620 if(criterion.debugLevel()>2) {
621 if(rank==0)
622 std::cout<<"Coarsening of index sets took "<<watch.elapsed()<<" seconds."<<std::endl;
623 }
624
625 watch.reset();
626
627 infoLevel->buildGlobalLookup(aggregates);
628 AggregatesPublisher<Vertex,OverlapFlags,ParallelInformation>::publish(*aggregatesMap,
629 *info,
630 infoLevel->globalLookup());
631
632
633 if(criterion.debugLevel()>2) {
634 if(rank==0)
635 std::cout<<"Communicating global aggregate numbers took "<<watch.elapsed()<<" seconds."<<std::endl;
636 }
637
638 watch.reset();
639 std::vector<bool>& visited=excluded;
640
641 typedef std::vector<bool>::iterator Iterator;
643 Iterator end = visited.end();
644 for(Iterator iter= visited.begin(); iter != end; ++iter)
645 *iter=false;
646
647 VisitedMap2 visitedMap2(visited.begin(), Dune::IdentityMap());
648
649 std::shared_ptr<typename MatrixOperator::matrix_type>
650 coarseMatrix(productBuilder.build(*(std::get<0>(graphs)), visitedMap2,
651 *info,
652 *aggregatesMap,
653 aggregates,
654 OverlapFlags()));
655 dverb<<"Building of sparsity pattern took "<<watch.elapsed()<<std::endl;
656 watch.reset();
657 info->freeGlobalLookup();
658
659 delete std::get<0>(graphs);
660 productBuilder.calculate(matrix->getmat(), *aggregatesMap, *coarseMatrix, *infoLevel, OverlapFlags());
661
662 if(criterion.debugLevel()>2) {
663 if(rank==0)
664 std::cout<<"Calculation entries of Galerkin product took "<<watch.elapsed()<<" seconds."<<std::endl;
665 }
666
667 BIGINT nonzeros = countNonZeros(*coarseMatrix);
668 allnonzeros = allnonzeros + infoLevel->communicator().sum(nonzeros);
669 MatrixArgs args(coarseMatrix, *infoLevel);
670
671 matrices_.addCoarser(args);
672 redistributes_.push_back(RedistributeInfoType());
673 } // end level loop
674
675
676 infoLevel->freeGlobalLookup();
677
678 built_=true;
679 AggregatesMap* aggregatesMap=new AggregatesMap(0);
680 aggregatesMaps_.push_back(aggregatesMap);
681
682 if(criterion.debugLevel()>0) {
683 if(level==criterion.maxLevel()) {
684 BIGINT unknownsLevel = mlevel->getmat().N();
685 unknownsLevel = infoLevel->communicator().sum(unknownsLevel);
686 if(rank==0 && criterion.debugLevel()>1) {
687 double dunknownsLevel = unknownsLevel.todouble();
688 std::cout<<"Level "<<level<<" has "<<dunknownsLevel<<" unknowns, "<<dunknownsLevel/infoLevel->communicator().size()
689 <<" unknowns per proc (procs="<<infoLevel->communicator().size()<<")"<<std::endl;
690 }
691 }
692 }
693
694 if(criterion.accumulate() && !redistributes_.back().isSetup() &&
695 infoLevel->communicator().size()>1) {
696#if HAVE_MPI && !HAVE_PARMETIS
697 if(criterion.accumulate()==successiveAccu &&
698 infoLevel->communicator().rank()==0)
699 std::cerr<<"Successive accumulation of data on coarse levels only works with ParMETIS installed."
700 <<" Fell back to accumulation to one domain on coarsest level"<<std::endl;
701#endif
702
703 // accumulate to fewer processors
704 std::shared_ptr<Matrix> redistMat = std::make_shared<Matrix>();
705 std::shared_ptr<ParallelInformation> redistComm;
706 int nodomains = 1;
707
708 repartitionAndDistributeMatrix(mlevel->getmat(), redistMat, *infoLevel,
709 redistComm, redistributes_.back(), nodomains,criterion);
710 MatrixArgs args(redistMat, *redistComm);
711 BIGINT unknownsRedist = redistMat->N();
712 unknownsRedist = infoLevel->communicator().sum(unknownsRedist);
713
714 if(redistComm->communicator().rank()==0 && criterion.debugLevel()>1) {
715 double dunknownsRedist = unknownsRedist.todouble();
716 std::cout<<"Level "<<level<<" redistributed has "<<dunknownsRedist<<" unknowns, "<<dunknownsRedist/redistComm->communicator().size()
717 <<" unknowns per proc (procs="<<redistComm->communicator().size()<<")"<<std::endl;
718 }
719 mlevel.addRedistributed(ConstructionTraits<MatrixOperator>::construct(args));
720 infoLevel.addRedistributed(redistComm);
721 infoLevel->freeGlobalLookup();
722 }
723
724 int levels = matrices_.levels();
725 maxlevels_ = parallelInformation_.finest()->communicator().max(levels);
726 assert(matrices_.levels()==redistributes_.size());
727 if(hasCoarsest() && rank==0 && criterion.debugLevel()>1)
728 std::cout<<"operator complexity: "<<allnonzeros.todouble()/finenonzeros.todouble()<<std::endl;
729
730 }
731
732 template<class M, class IS, class A>
735 {
736 return matrices_;
737 }
738
739 template<class M, class IS, class A>
742 {
743 return parallelInformation_;
744 }
745
746 template<class M, class IS, class A>
747 void MatrixHierarchy<M,IS,A>::getCoarsestAggregatesOnFinest(std::vector<std::size_t>& data) const
748 {
749 int levels=aggregatesMaps().size();
750 int maxlevels=parallelInformation_.finest()->communicator().max(levels);
751 std::size_t size=(*(aggregatesMaps().begin()))->noVertices();
752 // We need an auxiliary vector for the consecutive prolongation.
753 std::vector<std::size_t> tmp;
754 std::vector<std::size_t> *coarse, *fine;
755
756 // make sure the allocated space suffices.
757 tmp.reserve(size);
758 data.reserve(size);
759
760 // Correctly assign coarse and fine for the first prolongation such that
761 // we end up in data in the end.
762 if(levels%2==0) {
763 coarse=&tmp;
764 fine=&data;
765 }else{
766 coarse=&data;
767 fine=&tmp;
768 }
769
770 // Number the unknowns on the coarsest level consecutively for each process.
771 if(levels==maxlevels) {
772 const AggregatesMap& map = *(*(++aggregatesMaps().rbegin()));
773 std::size_t m=0;
774
775 for(typename AggregatesMap::const_iterator iter = map.begin(); iter != map.end(); ++iter)
776 if(*iter< AggregatesMap::ISOLATED)
777 m=std::max(*iter,m);
778
779 coarse->resize(m+1);
780 std::size_t i=0;
781 srand((unsigned)std::clock());
782 std::set<size_t> used;
783 for(typename std::vector<std::size_t>::iterator iter=coarse->begin(); iter != coarse->end();
784 ++iter, ++i)
785 {
786 std::pair<std::set<std::size_t>::iterator,bool> ibpair
787 = used.insert(static_cast<std::size_t>((((double)rand())/(RAND_MAX+1.0)))*coarse->size());
788
789 while(!ibpair.second)
790 ibpair = used.insert(static_cast<std::size_t>((((double)rand())/(RAND_MAX+1.0))*coarse->size()));
791 *iter=*(ibpair.first);
792 }
793 }
794
795 typename ParallelInformationHierarchy::Iterator pinfo = parallelInformation().coarsest();
796 --pinfo;
797
798 // Now consecutively project the numbers to the finest level.
799 for(typename AggregatesMapList::const_reverse_iterator aggregates=++aggregatesMaps().rbegin();
800 aggregates != aggregatesMaps().rend(); ++aggregates,--levels) {
801
802 fine->resize((*aggregates)->noVertices());
803 fine->assign(fine->size(), 0);
804 Transfer<typename AggregatesMap::AggregateDescriptor, std::vector<std::size_t>, ParallelInformation>
805 ::prolongateVector(*(*aggregates), *coarse, *fine, static_cast<std::size_t>(1), *pinfo);
806 --pinfo;
807 std::swap(coarse, fine);
808 }
809
810 // Assertion to check that we really projected to data on the last step.
811 assert(coarse==&data);
812 }
813
814 template<class M, class IS, class A>
817 {
818 return aggregatesMaps_;
819 }
820 template<class M, class IS, class A>
823 {
824 return redistributes_;
825 }
826
827 template<class M, class IS, class A>
829 {
830 typedef typename AggregatesMapList::reverse_iterator AggregatesMapIterator;
831 typedef typename ParallelMatrixHierarchy::Iterator Iterator;
832 typedef typename ParallelInformationHierarchy::Iterator InfoIterator;
833
834 AggregatesMapIterator amap = aggregatesMaps_.rbegin();
835 InfoIterator info = parallelInformation_.coarsest();
836 for(Iterator level=matrices_.coarsest(), finest=matrices_.finest(); level != finest; --level, --info, ++amap) {
837 (*amap)->free();
838 delete *amap;
839 }
840 delete *amap;
841 }
842
843 template<class M, class IS, class A>
844 template<class V, class BA, class TA>
846 {
847 assert(hierarchy.levels()==1);
848 typedef typename ParallelMatrixHierarchy::ConstIterator Iterator;
849 typedef typename RedistributeInfoList::const_iterator RIter;
850 RIter redist = redistributes_.begin();
851
852 Iterator matrix = matrices_.finest(), coarsest = matrices_.coarsest();
853 int level=0;
854 if(redist->isSetup())
855 hierarchy.addRedistributedOnCoarsest(matrix.getRedistributed().getmat().N());
856 Dune::dvverb<<"Level "<<level<<" has "<<matrices_.finest()->getmat().N()<<" unknowns!"<<std::endl;
857
858 while(matrix != coarsest) {
859 ++matrix; ++level; ++redist;
860 Dune::dvverb<<"Level "<<level<<" has "<<matrix->getmat().N()<<" unknowns!"<<std::endl;
861
862 hierarchy.addCoarser(matrix->getmat().N());
863 if(redist->isSetup())
864 hierarchy.addRedistributedOnCoarsest(matrix.getRedistributed().getmat().N());
865
866 }
867
868 }
869
870 template<class M, class IS, class A>
871 template<class S, class TA>
873 const typename SmootherTraits<S>::Arguments& sargs) const
874 {
875 assert(smoothers.levels()==0);
876 typedef typename ParallelMatrixHierarchy::ConstIterator MatrixIterator;
877 typedef typename ParallelInformationHierarchy::ConstIterator PinfoIterator;
878 typedef typename AggregatesMapList::const_iterator AggregatesIterator;
879
881 cargs.setArgs(sargs);
882 PinfoIterator pinfo = parallelInformation_.finest();
883 AggregatesIterator aggregates = aggregatesMaps_.begin();
884 int level=0;
885 for(MatrixIterator matrix = matrices_.finest(), coarsest = matrices_.coarsest();
886 matrix != coarsest; ++matrix, ++pinfo, ++aggregates, ++level) {
887 cargs.setMatrix(matrix->getmat(), **aggregates);
888 cargs.setComm(*pinfo);
889 smoothers.addCoarser(cargs);
890 }
891 if(maxlevels()>levels()) {
892 // This is not the globally coarsest level and therefore smoothing is needed
893 cargs.setMatrix(matrices_.coarsest()->getmat(), **aggregates);
894 cargs.setComm(*pinfo);
895 smoothers.addCoarser(cargs);
896 ++level;
897 }
898 }
899
900 template<class M, class IS, class A>
901 template<class F>
903 {
904 typedef typename AggregatesMapList::iterator AggregatesMapIterator;
905 typedef typename ParallelMatrixHierarchy::Iterator Iterator;
906 typedef typename ParallelInformationHierarchy::Iterator InfoIterator;
907
908 AggregatesMapIterator amap = aggregatesMaps_.begin();
909 BaseGalerkinProduct productBuilder;
910 InfoIterator info = parallelInformation_.finest();
911 typename RedistributeInfoList::iterator riIter = redistributes_.begin();
912 Iterator level = matrices_.finest(), coarsest=matrices_.coarsest();
913 if(level.isRedistributed()) {
914 info->buildGlobalLookup(level->getmat().N());
915 redistributeMatrixEntries(const_cast<Matrix&>(level->getmat()),
916 const_cast<Matrix&>(level.getRedistributed().getmat()),
917 *info,info.getRedistributed(), *riIter);
918 info->freeGlobalLookup();
919 }
920
921 for(; level!=coarsest; ++amap) {
922 const Matrix& fine = (level.isRedistributed() ? level.getRedistributed() : *level).getmat();
923 ++level;
924 ++info;
925 ++riIter;
926 productBuilder.calculate(fine, *(*amap), const_cast<Matrix&>(level->getmat()), *info, copyFlags);
927 if(level.isRedistributed()) {
928 info->buildGlobalLookup(level->getmat().N());
929 redistributeMatrixEntries(const_cast<Matrix&>(level->getmat()),
930 const_cast<Matrix&>(level.getRedistributed().getmat()), *info,
931 info.getRedistributed(), *riIter);
932 info->freeGlobalLookup();
933 }
934 }
935 }
936
937 template<class M, class IS, class A>
939 {
940 return matrices_.levels();
941 }
942
943 template<class M, class IS, class A>
945 {
946 return maxlevels_;
947 }
948
949 template<class M, class IS, class A>
951 {
952 return levels()==maxlevels() &&
953 (!matrices_.coarsest().isRedistributed() ||matrices_.coarsest()->getmat().N()>0);
954 }
955
956 template<class M, class IS, class A>
958 {
959 return built_;
960 }
961
963 } // namespace Amg
964} // namespace Dune
965
966#endif // end DUNE_AMG_MATRIXHIERARCHY_HH
Provides classes for the Coloring process of AMG.
This file implements a vector space as a tensor product of a given vector space. The number of compon...
Class providing information about the mapping of the vertices onto aggregates.
Definition: aggregates.hh:560
Base class of all aggregation criterions.
Definition: aggregates.hh:49
The criterion describing the stop criteria for the coarsening process.
Definition: matrixhierarchy.hh:283
T AggregationCriterion
The criterion for tagging connections as strong and nodes as isolated. This might be e....
Definition: matrixhierarchy.hh:289
CoarsenCriterion(int maxLevel=100, int coarsenTarget=1000, double minCoarsenRate=1.2, double prolongDamp=1.6, AccumulationMode accumulate=successiveAccu, bool useFixedOrder=false)
Constructor.
Definition: matrixhierarchy.hh:304
LevelIterator< Hierarchy< MatrixOperator, Allocator >, MatrixOperator > Iterator
Type of the mutable iterator.
Definition: hierarchy.hh:220
LevelIterator< const Hierarchy< MatrixOperator, Allocator >, const MatrixOperator > ConstIterator
Type of the const iterator.
Definition: hierarchy.hh:223
The hierarchies build by the coarsening process.
Definition: matrixhierarchy.hh:61
typename std::allocator_traits< Allocator >::template rebind_alloc< AggregatesMap * > AAllocator
Allocator for pointers.
Definition: matrixhierarchy.hh:85
Dune::Amg::Hierarchy< ParallelInformation, Allocator > ParallelInformationHierarchy
The type of the parallel informarion hierarchy.
Definition: matrixhierarchy.hh:82
std::list< AggregatesMap *, AAllocator > AggregatesMapList
The type of the aggregates maps list.
Definition: matrixhierarchy.hh:88
PI ParallelInformation
The type of the index set.
Definition: matrixhierarchy.hh:70
Dune::Amg::Hierarchy< MatrixOperator, Allocator > ParallelMatrixHierarchy
The type of the parallel matrix hierarchy.
Definition: matrixhierarchy.hh:79
A Allocator
The allocator to use.
Definition: matrixhierarchy.hh:73
RedistributeInformation< ParallelInformation > RedistributeInfoType
The type of the redistribute information.
Definition: matrixhierarchy.hh:91
typename std::allocator_traits< Allocator >::template rebind_alloc< RedistributeInfoType > RILAllocator
Allocator for RedistributeInfoType.
Definition: matrixhierarchy.hh:94
std::list< RedistributeInfoType, RILAllocator > RedistributeInfoList
The type of the list of redistribute information.
Definition: matrixhierarchy.hh:97
Dune::Amg::AggregatesMap< typename MatrixGraph< Matrix >::VertexDescriptor > AggregatesMap
The type of the aggregates map we use.
Definition: matrixhierarchy.hh:76
MatrixOperator::matrix_type Matrix
The type of the matrix.
Definition: matrixhierarchy.hh:67
M MatrixOperator
The type of the matrix operator.
Definition: matrixhierarchy.hh:64
All parameters for AMG.
Definition: parameters.hh:416
Attaches properties to the edges and vertices of a graph.
Definition: graph.hh:978
Graph::VertexDescriptor VertexDescriptor
The vertex descriptor.
Definition: graph.hh:988
A vector of blocks with memory management.
Definition: bvector.hh:392
derive error class from the base class in common
Definition: istlexception.hh:19
Adapter to turn a random access iterator into a property map.
Definition: propertymap.hh:108
A generic dynamic dense matrix.
Definition: matrix.hh:561
A::size_type size_type
Type for indices and sizes.
Definition: matrix.hh:577
MatrixImp::DenseMatrixBase< T, A >::window_type row_type
The type implementing a matrix row.
Definition: matrix.hh:574
A simple stop watch.
Definition: timer.hh:43
void reset() noexcept
Reset timer while keeping the running/stopped state.
Definition: timer.hh:57
double elapsed() const noexcept
Get elapsed user-time from last reset until now/last stop in seconds.
Definition: timer.hh:77
Portable very large unsigned integers.
Definition: bigunsignedint.hh:73
Helper classes for the construction of classes without empty constructor.
Provides classes for initializing the link attributes of a matrix graph.
Provides a class for building the galerkin product based on a aggregation scheme.
Provdes class for identifying aggregates globally.
Provides classes for building the matrix graph.
#define DUNE_THROW(E,...)
Definition: exceptions.hh:312
constexpr auto max
Function object that returns the greater of the given values.
Definition: hybridutilities.hh:484
constexpr auto min
Function object that returns the smaller of the given values.
Definition: hybridutilities.hh:506
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:279
const AggregatesMapList & aggregatesMaps() const
Get the hierarchy of the mappings of the nodes onto aggregates.
Definition: matrixhierarchy.hh:816
bool isBuilt() const
Whether the hierarchy was built.
Definition: matrixhierarchy.hh:957
std::size_t levels() const
Get the number of levels in the hierarchy.
Definition: hierarchy.hh:326
std::size_t levels() const
Get the number of levels in the hierarchy.
Definition: matrixhierarchy.hh:938
void addCoarser(Arguments &args)
Add an element on a coarser level.
Definition: hierarchy.hh:338
const RedistributeInfoList & redistributeInformation() const
Get the hierarchy of the information about redistributions,.
Definition: matrixhierarchy.hh:822
const ParallelInformationHierarchy & parallelInformation() const
Get the hierarchy of the parallel data distribution information.
Definition: matrixhierarchy.hh:741
const ParallelMatrixHierarchy & matrices() const
Get the matrix hierarchy.
Definition: matrixhierarchy.hh:734
std::size_t maxlevels() const
Get the max number of levels in the hierarchy of processors.
Definition: matrixhierarchy.hh:944
static const V ISOLATED
Identifier of isolated vertices.
Definition: aggregates.hh:571
void recalculateGalerkin(const F &copyFlags)
Recalculate the galerkin products.
Definition: matrixhierarchy.hh:902
const void * Arguments
A type holding all the arguments needed to call the constructor.
Definition: construction.hh:44
std::size_t noVertices() const
Get the number of vertices.
void coarsenVector(Hierarchy< BlockVector< V, BA >, TA > &hierarchy) const
Coarsen the vector hierarchy according to the matrix hierarchy.
Definition: matrixhierarchy.hh:845
MatrixHierarchy(std::shared_ptr< MatrixOperator > fineMatrix, std::shared_ptr< ParallelInformation > pinfo=std::make_shared< ParallelInformation >())
Constructor.
Definition: matrixhierarchy.hh:392
AccumulationMode
Identifiers for the different accumulation modes.
Definition: parameters.hh:231
void build(const T &criterion)
Build the matrix hierarchy using aggregation.
Definition: matrixhierarchy.hh:403
void free()
Free the allocated memory.
void coarsenSmoother(Hierarchy< S, TA > &smoothers, const typename SmootherTraits< S >::Arguments &args) const
Coarsen the smoother hierarchy according to the matrix hierarchy.
Definition: matrixhierarchy.hh:872
void buildDependency(G &graph, const typename C::Matrix &matrix, C criterion, bool finestLevel)
Build the dependency of the matrix graph.
std::tuple< int, int, int, int > buildAggregates(const M &matrix, G &graph, const C &criterion, bool finestLevel)
Build the aggregates.
void getCoarsestAggregatesOnFinest(std::vector< std::size_t > &data) const
Get the mapping of fine level unknowns to coarse level aggregates.
Definition: matrixhierarchy.hh:747
@ MAX_PROCESSES
Hard limit for the number of processes allowed.
Definition: matrixhierarchy.hh:50
@ atOnceAccu
Accumulate data to one process at once.
Definition: parameters.hh:243
@ successiveAccu
Successively accumulate to fewer processes.
Definition: parameters.hh:247
auto countNonZeros(const M &, typename std::enable_if_t< Dune::IsNumber< M >::value > *sfinae=nullptr)
Get the number of nonzero fields in the matrix.
Definition: matrixutils.hh:119
DVVerbType dvverb(std::cout)
stream for very verbose output.
Definition: stdstreams.hh:96
DInfoType dinfo(std::cout)
Stream for informative output.
Definition: stdstreams.hh:141
DVerbType dverb(std::cout)
Singleton of verbose debug stream.
Definition: stdstreams.hh:117
Provides a classes representing the hierarchies in AMG.
Provides a map between global and local indices.
Provides a class for building the index set and remote indices on the coarse level.
Functionality for redistributing a sparse matrix.
Some handy generic functions for ISTL matrices.
Dune namespace.
Definition: alignedallocator.hh:13
constexpr std::integral_constant< std::size_t, sizeof...(II)> size(std::integer_sequence< T, II... >)
Return the size of the sequence.
Definition: integersequence.hh:75
void redistributeMatrix(M &origMatrix, M &newMatrix, C &origComm, C &newComm, RedistributeInformation< C > &ri)
Redistribute a matrix according to given domain decompositions.
Definition: matrixredistribute.hh:820
bool graphRepartition(const G &graph, Dune::OwnerOverlapCopyCommunication< T1, T2 > &oocomm, Metis::idx_t nparts, std::shared_ptr< Dune::OwnerOverlapCopyCommunication< T1, T2 > > &outcomm, RedistributeInterface &redistInf, bool verbose=false)
execute a graph repartition for a giving graph and indexset.
Definition: repartition.hh:1228
constexpr auto get(std::integer_sequence< T, II... >, std::integral_constant< std::size_t, pos >={})
Return the entry at position pos of the given sequence.
Definition: integersequence.hh:22
Classes for the generic construction and application of the smoothers.
Traits class for generically constructing non default constructable types.
Definition: construction.hh:39
Traits class for getting the attribute class of a smoother.
Definition: smoother.hh:66
Tag idnetifying the visited property of a vertex.
Definition: properties.hh:29
A property map that applies the identity function to integers.
Definition: propertymap.hh:293
Selector for the property map type.
Definition: propertymap.hh:320
static Category category(const OP &op, decltype(op.category()) *=nullptr)
Helperfunction to extract the solver category either from an enum, or from the newly introduced virtu...
Definition: solvercategory.hh:34
Prolongation and restriction for amg.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jan 8, 23:30, 2025)