Loading [MathJax]/extensions/tex2jax.js

DUNE PDELab (unstable)

defaultmatrixhelper.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_GEOMETRY_UTILITY_DEFAULTMATRIXHELPER_HH
6#define DUNE_GEOMETRY_UTILITY_DEFAULTMATRIXHELPER_HH
7
8#include <cmath>
9
12
13namespace Dune {
14namespace Impl {
15
16// FieldMatrixHelper
17// -----------------
18
19template< class ct >
20struct FieldMatrixHelper
21{
22 using ctype = ct;
23
25 template< int m, int n >
26 [[ deprecated("Use A.mv(x,y) instead.") ]]
27 static void Ax ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &ret )
28 {
29 A.mv(x,ret);
30 }
31
33 template< int m, int n >
34 [[ deprecated("Use A.mtv(x,y) instead.") ]]
35 static void ATx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &ret )
36 {
37 A.mtv(x,ret);
38 }
39
41 template< int m, int n, int p >
42 [[ deprecated("Use FMatrixHelp::multMatrix(A,B,ret)") ]]
43 static void AB ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, n, p > &B, FieldMatrix< ctype, m, p > &ret )
44 {
45 FMatrixHelp::multMatrix(A,B,ret);
46 }
47
49 template< int m, int n, int p >
50 static void ATBT ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, p, m > &B, FieldMatrix< ctype, n, p > &ret )
51 {
52 for( int i = 0; i < n; ++i )
53 {
54 for( int j = 0; j < p; ++j )
55 {
56 ret[ i ][ j ] = ctype( 0 );
57 for( int k = 0; k < m; ++k )
58 ret[ i ][ j ] += A[ k ][ i ] * B[ j ][ k ];
59 }
60 }
61 }
62
64 template< int m, int n >
65 static void ATA_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
66 {
67 for( int i = 0; i < n; ++i )
68 {
69 for( int j = 0; j <= i; ++j )
70 {
71 ret[ i ][ j ] = ctype( 0 );
72 for( int k = 0; k < m; ++k )
73 ret[ i ][ j ] += A[ k ][ i ] * A[ k ][ j ];
74 }
75 }
76 }
77
79 template< int m, int n >
80 [[ deprecated("Use FMatrixHelp::multTransposedMatrix(A,ret)") ]]
81 static void ATA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
82 {
83 return FMatrixHelp::multTransposedMatrix(A,ret);
84 }
85
87 template< int m, int n >
88 static void AAT_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
89 {
90 for( int i = 0; i < m; ++i )
91 {
92 for( int j = 0; j <= i; ++j )
93 {
94 ctype &retij = ret[ i ][ j ];
95 retij = A[ i ][ 0 ] * A[ j ][ 0 ];
96 for( int k = 1; k < n; ++k )
97 retij += A[ i ][ k ] * A[ j ][ k ];
98 }
99 }
100 }
101
103 template< int m, int n >
104 static void AAT ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
105 {
106 for( int i = 0; i < m; ++i )
107 {
108 for( int j = 0; j < i; ++j )
109 {
110 ret[ i ][ j ] = ctype( 0 );
111 for( int k = 0; k < n; ++k )
112 ret[ i ][ j ] += A[ i ][ k ] * A[ j ][ k ];
113 ret[ j ][ i ] = ret[ i ][ j ];
114 }
115 ret[ i ][ i ] = ctype( 0 );
116 for( int k = 0; k < n; ++k )
117 ret[ i ][ i ] += A[ i ][ k ] * A[ i ][ k ];
118 }
119 }
120
122 // [[ expects: L is lower triangular ]]
123 template< int n >
124 static void Lx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
125 {
126 for( int i = 0; i < n; ++i )
127 {
128 ret[ i ] = ctype( 0 );
129 for( int j = 0; j <= i; ++j )
130 ret[ i ] += L[ i ][ j ] * x[ j ];
131 }
132 }
133
135 // [[ expects: L is lower triangular ]]
136 template< int n >
137 static void LTx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
138 {
139 for( int i = 0; i < n; ++i )
140 {
141 ret[ i ] = ctype( 0 );
142 for( int j = i; j < n; ++j )
143 ret[ i ] += L[ j ][ i ] * x[ j ];
144 }
145 }
146
148 // [[ expects: L is lower triangular ]]
149 template< int n >
150 static void LTL ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
151 {
152 for( int i = 0; i < n; ++i )
153 {
154 for( int j = 0; j < i; ++j )
155 {
156 ret[ i ][ j ] = ctype( 0 );
157 for( int k = i; k < n; ++k )
158 ret[ i ][ j ] += L[ k ][ i ] * L[ k ][ j ];
159 ret[ j ][ i ] = ret[ i ][ j ];
160 }
161 ret[ i ][ i ] = ctype( 0 );
162 for( int k = i; k < n; ++k )
163 ret[ i ][ i ] += L[ k ][ i ] * L[ k ][ i ];
164 }
165 }
166
168 // [[ expects: L is lower triangular ]]
169 template< int n >
170 static void LLT ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
171 {
172 for( int i = 0; i < n; ++i )
173 {
174 for( int j = 0; j < i; ++j )
175 {
176 ret[ i ][ j ] = ctype( 0 );
177 for( int k = 0; k <= j; ++k )
178 ret[ i ][ j ] += L[ i ][ k ] * L[ j ][ k ];
179 ret[ j ][ i ] = ret[ i ][ j ];
180 }
181 ret[ i ][ i ] = ctype( 0 );
182 for( int k = 0; k <= i; ++k )
183 ret[ i ][ i ] += L[ i ][ k ] * L[ i ][ k ];
184 }
185 }
186
189 // [[ expects: A is spd ]]
190 template< int n >
191 static bool cholesky_L ( const FieldMatrix< ctype, n, n > &A, FieldMatrix< ctype, n, n > &ret, const bool checkSingular = false )
192 {
193 using std::sqrt;
194 for( int i = 0; i < n; ++i )
195 {
196 ctype &rii = ret[ i ][ i ];
197
198 ctype xDiag = A[ i ][ i ];
199 for( int j = 0; j < i; ++j )
200 xDiag -= ret[ i ][ j ] * ret[ i ][ j ];
201
202 // in some cases A can be singular, e.g. when checking local for
203 // outside points during checkInside
204 if( checkSingular && ! ( xDiag > ctype( 0 )) )
205 return false ;
206
207 // otherwise this should be true always
208 assert( xDiag > ctype( 0 ) );
209 rii = sqrt( xDiag );
210
211 ctype invrii = ctype( 1 ) / rii;
212 for( int k = i+1; k < n; ++k )
213 {
214 ctype x = A[ k ][ i ];
215 for( int j = 0; j < i; ++j )
216 x -= ret[ i ][ j ] * ret[ k ][ j ];
217 ret[ k ][ i ] = invrii * x;
218 }
219 }
220
221 // return true for meaning A is non-singular
222 return true;
223 }
224
226 // [[ expects: L is lower triangular ]]
227 template< int n >
228 static ctype detL ( const FieldMatrix< ctype, n, n > &L )
229 {
230 ctype det( 1 );
231 for( int i = 0; i < n; ++i )
232 det *= L[ i ][ i ];
233 return det;
234 }
235
237 // [[ expects: L is lower triangular ]]
238 template< int n >
239 static ctype invL ( FieldMatrix< ctype, n, n > &L )
240 {
241 ctype det( 1 );
242 for( int i = 0; i < n; ++i )
243 {
244 ctype &lii = L[ i ][ i ];
245 det *= lii;
246 lii = ctype( 1 ) / lii;
247 for( int j = 0; j < i; ++j )
248 {
249 ctype &lij = L[ i ][ j ];
250 ctype x = lij * L[ j ][ j ];
251 for( int k = j+1; k < i; ++k )
252 x += L[ i ][ k ] * L[ k ][ j ];
253 lij = (-lii) * x;
254 }
255 }
256 return det;
257 }
258
260 // [[ expects: L is lower triangular ]]
261 template< int n >
262 static void invLx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
263 {
264 for( int i = 0; i < n; ++i )
265 {
266 for( int j = 0; j < i; ++j )
267 x[ i ] -= L[ i ][ j ] * x[ j ];
268 x[ i ] /= L[ i ][ i ];
269 }
270 }
271
273 // [[ expects: L is lower triangular ]]
274 template< int n >
275 static void invLTx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
276 {
277 for( int i = n; i > 0; --i )
278 {
279 for( int j = i; j < n; ++j )
280 x[ i-1 ] -= L[ j ][ i-1 ] * x[ j ];
281 x[ i-1 ] /= L[ i-1 ][ i-1 ];
282 }
283 }
284
286 // [[ expects: A is spd ]]
287 template< int n >
288 static ctype spdDetA ( const FieldMatrix< ctype, n, n > &A )
289 {
290 FieldMatrix< ctype, n, n > L;
291 cholesky_L( A, L );
292 return detL( L );
293 }
294
296 // [[ expects: A is spd ]]
297 template< int n >
298 static ctype spdInvA ( FieldMatrix< ctype, n, n > &A )
299 {
300 FieldMatrix< ctype, n, n > L;
301 cholesky_L( A, L );
302 const ctype det = invL( L );
303 LTL( L, A );
304 return det;
305 }
306
308 // [[ expects: A is spd ]]
309 template< int n >
310 static bool spdInvAx ( FieldMatrix< ctype, n, n > &A, FieldVector< ctype, n > &x, const bool checkSingular = false )
311 {
312 FieldMatrix< ctype, n, n > L;
313 const bool invertible = cholesky_L( A, L, checkSingular );
314 if( ! invertible ) return invertible ;
315 invLx( L, x );
316 invLTx( L, x );
317 return invertible;
318 }
319
321 template< int m, int n >
322 static ctype detATA ( const FieldMatrix< ctype, m, n > &A )
323 {
324 if constexpr( m >= n )
325 {
326 FieldMatrix< ctype, n, n > ata;
327 ATA_L( A, ata );
328 return spdDetA( ata );
329 }
330 else
331 return ctype( 0 );
332 }
333
339 template< int m, int n >
340 static ctype sqrtDetAAT ( const FieldMatrix< ctype, m, n > &A )
341 {
342 using std::abs;
343 using std::sqrt;
344 // These special cases are here not only for speed reasons:
345 // The general implementation aborts if the matrix is almost singular,
346 // and the special implementation provide a stable way to handle that case.
347 if constexpr( (n == 2) && (m == 2) )
348 {
349 // Special implementation for 2x2 matrices: faster and more stable
350 return abs( A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ] );
351 }
352 else if constexpr( (n == 3) && (m == 3) )
353 {
354 // Special implementation for 3x3 matrices
355 const ctype v0 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 1 ][ 1 ] * A[ 0 ][ 2 ];
356 const ctype v1 = A[ 0 ][ 2 ] * A[ 1 ][ 0 ] - A[ 1 ][ 2 ] * A[ 0 ][ 0 ];
357 const ctype v2 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 1 ][ 0 ] * A[ 0 ][ 1 ];
358 return abs( v0 * A[ 2 ][ 0 ] + v1 * A[ 2 ][ 1 ] + v2 * A[ 2 ][ 2 ] );
359 }
360 else if constexpr( (n == 3) && (m == 2) )
361 {
362 // Special implementation for 2x3 matrices
363 const ctype v0 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 0 ][ 1 ] * A[ 1 ][ 0 ];
364 const ctype v1 = A[ 0 ][ 0 ] * A[ 1 ][ 2 ] - A[ 1 ][ 0 ] * A[ 0 ][ 2 ];
365 const ctype v2 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 0 ][ 2 ] * A[ 1 ][ 1 ];
366 return sqrt( v0*v0 + v1*v1 + v2*v2);
367 }
368 else if constexpr( n >= m )
369 {
370 // General case
371 FieldMatrix< ctype, m, m > aat;
372 AAT_L( A, aat );
373 return spdDetA( aat );
374 }
375 else
376 return ctype( 0 );
377 }
378
380 // => A^{-1}_L A = I
381 template< int m, int n >
382 static ctype leftInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
383 {
384 using std::abs;
385 if constexpr( (n == 2) && (m == 2) )
386 {
387 const ctype det = (A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ]);
388 const ctype detInv = ctype( 1 ) / det;
389 ret[ 0 ][ 0 ] = A[ 1 ][ 1 ] * detInv;
390 ret[ 1 ][ 1 ] = A[ 0 ][ 0 ] * detInv;
391 ret[ 1 ][ 0 ] = -A[ 1 ][ 0 ] * detInv;
392 ret[ 0 ][ 1 ] = -A[ 0 ][ 1 ] * detInv;
393 return abs( det );
394 }
395 else
396 {
397 FieldMatrix< ctype, n, n > ata;
398 ATA_L( A, ata );
399 const ctype det = spdInvA( ata );
400 ATBT( ata, A, ret );
401 return det;
402 }
403 }
404
406 template< int m, int n >
407 static bool leftInvAx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &y )
408 {
409 static_assert((m >= n), "Matrix has no left inverse.");
410 FieldMatrix< ctype, n, n > ata;
411 A.mtv(x, y);
412 ATA_L( A, ata );
413 return spdInvAx( ata, y, true );
414 }
415
417 template< int m, int n >
418 static ctype rightInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
419 {
420 static_assert((n >= m), "Matrix has no right inverse.");
421 using std::abs;
422 if constexpr( (n == 2) && (m == 2) )
423 {
424 const ctype det = (A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ]);
425 const ctype detInv = ctype( 1 ) / det;
426 ret[ 0 ][ 0 ] = A[ 1 ][ 1 ] * detInv;
427 ret[ 1 ][ 1 ] = A[ 0 ][ 0 ] * detInv;
428 ret[ 1 ][ 0 ] = -A[ 1 ][ 0 ] * detInv;
429 ret[ 0 ][ 1 ] = -A[ 0 ][ 1 ] * detInv;
430 return abs( det );
431 }
432 else
433 {
434 FieldMatrix< ctype, m , m > aat;
435 AAT_L( A, aat );
436 const ctype det = spdInvA( aat );
437 ATBT( A , aat , ret );
438 return det;
439 }
440 }
441
443 template< int m, int n >
444 static bool xTRightInvA ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &y )
445 {
446 static_assert((n >= m), "Matrix has no right inverse.");
447 FieldMatrix< ctype, m, m > aat;
448 A.mv(x, y);
449 AAT_L( A, aat );
450 // check whether aat is singular and return true if non-singular
451 return spdInvAx( aat, y, true );
452 }
453};
454
455} // namespace Impl
456} // namespace Dune
457
458#endif // DUNE_GEOMETRY_UTILITY_DEFAULTMATRIXHELPER_HH
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden & Uni Heidelberg  |  generated with Hugo v0.111.3 (Apr 3, 22:46, 2025)