DUNE PDELab (git)

brezzidouglasmarini1cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_CUBE2D_LOCALINTERPOLATION_HH
6#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_CUBE2D_LOCALINTERPOLATION_HH
7
8#include <vector>
9
11
12namespace Dune
13{
14
23 template<class LB>
25 {
26
27 public:
30 {
31 sign0 = sign1 = sign2 = sign3 = 1.0;
32 }
33
40 {
41 sign0 = sign1 = sign2 = sign3 = 1.0;
42 if (s & 1)
43 {
44 sign0 = -1.0;
45 }
46 if (s & 2)
47 {
48 sign1 = -1.0;
49 }
50 if (s & 4)
51 {
52 sign2 = -1.0;
53 }
54 if (s & 8)
55 {
56 sign3 = -1.0;
57 }
58
59 n0[0] = -1.0;
60 n0[1] = 0.0;
61 n1[0] = 1.0;
62 n1[1] = 0.0;
63 n2[0] = 0.0;
64 n2[1] = -1.0;
65 n3[0] = 0.0;
66 n3[1] = 1.0;
67 }
68
77 template<typename F, typename C>
78 void interpolate (const F& f, std::vector<C>& out) const
79 {
80 // f gives v*outer normal at a point on the edge!
81 typedef typename LB::Traits::RangeFieldType Scalar;
82 //typedef typename LB::Traits::DomainFieldType Vector;
83
84 out.resize(8);
85 fill(out.begin(), out.end(), 0.0);
86
87 const int qOrder = 4;
89
90 for (typename QuadratureRule<Scalar,1>::const_iterator it = rule.begin();
91 it != rule.end(); ++it)
92 {
93 Scalar qPos = it->position();
94 typename LB::Traits::DomainType localPos;
95
96 localPos[0] = 0.0;
97 localPos[1] = qPos;
98 auto y = f(localPos);
99 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
100 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
101
102 localPos[0] = 1.0;
103 localPos[1] = qPos;
104 y = f(localPos);
105 out[2] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1;
106 out[3] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
107
108 localPos[0] = qPos;
109 localPos[1] = 0.0;
110 y = f(localPos);
111 out[4] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
112 out[5] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
113
114 localPos[0] = qPos;
115 localPos[1] = 1.0;
116 y = f(localPos);
117 out[6] += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
118 out[7] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
119 }
120 }
121
122 private:
123 typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
124 typename LB::Traits::DomainType n0, n1, n2, n3;
125 };
126}
127#endif // DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_CUBE2D_LOCALINTERPOLATION_HH
First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:25
void interpolate(const F &f, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:78
BDM1Cube2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 16.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:39
BDM1Cube2DLocalInterpolation()
Standard constructor.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:29
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:214
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:326
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:462
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 13, 23:29, 2024)