DUNE-FEM (unstable)

raviartthomas1cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE2D_LOCALINTERPOLATION_HH
6#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE2D_LOCALINTERPOLATION_HH
7
8#include <vector>
9
11
12
13namespace Dune
14{
15
24 template<class LB>
26 {
27
28 public:
34 RT1Cube2DLocalInterpolation (std::bitset<4> s = 0)
35 {
36 for (size_t i=0; i<4; i++)
37 sign_[i] = (s[i]) ? -1.0 : 1.0;
38
39 n_[0] = {-1.0, 0.0};
40 n_[1] = { 1.0, 0.0};
41 n_[2] = { 0.0, -1.0};
42 n_[3] = { 0.0, 1.0};
43 }
44
53 template<class F, class C>
54 void interpolate (const F& f, std::vector<C>& out) const
55 {
56 // f gives v*outer normal at a point on the edge!
57 typedef typename LB::Traits::RangeFieldType Scalar;
58 typedef typename LB::Traits::DomainFieldType Vector;
59
60 out.resize(12);
61 fill(out.begin(), out.end(), 0.0);
62
63 const int qOrder = 3;
64 const auto& rule1 = QuadratureRules<Scalar,1>::rule(GeometryTypes::cube(1), qOrder);
65
66 for (auto&& qp : rule1)
67 {
68 Scalar qPos = qp.position();
69 typename LB::Traits::DomainType localPos = {0.0, qPos};
70
71 auto y = f(localPos);
72 out[0] += (y[0]*n_[0][0] + y[1]*n_[0][1])*qp.weight()*sign_[0];
73 out[1] += (y[0]*n_[0][0] + y[1]*n_[0][1])*(2.0*qPos - 1.0)*qp.weight();
74
75 localPos = {1.0, qPos};
76 y = f(localPos);
77 out[2] += (y[0]*n_[1][0] + y[1]*n_[1][1])*qp.weight()*sign_[1];
78 out[3] += (y[0]*n_[1][0] + y[1]*n_[1][1])*(1.0 - 2.0*qPos)*qp.weight();
79
80 localPos = {qPos, 0.0};
81 y = f(localPos);
82 out[4] += (y[0]*n_[2][0] + y[1]*n_[2][1])*qp.weight()*sign_[2];
83 out[5] += (y[0]*n_[2][0] + y[1]*n_[2][1])*(1.0 - 2.0*qPos)*qp.weight();
84
85 localPos = {qPos, 1.0};
86 y = f(localPos);
87 out[6] += (y[0]*n_[3][0] + y[1]*n_[3][1])*qp.weight()*sign_[3];
88 out[7] += (y[0]*n_[3][0] + y[1]*n_[3][1])*(2.0*qPos - 1.0)*qp.weight();
89 }
90
91 const auto& rule2 = QuadratureRules<Vector,2>::rule(GeometryTypes::cube(2), qOrder);
92
93 for (auto&& qp : rule2)
94 {
95 auto qPos = qp.position();
96
97 auto y = f(qPos);
98 out[8] += y[0]*qp.weight();
99 out[9] += y[1]*qp.weight();
100 out[10] += y[0]*qPos[1]*qp.weight();
101 out[11] += y[1]*qPos[0]*qp.weight();
102 }
103 }
104
105 private:
106 // Edge orientations
107 std::array<typename LB::Traits::RangeFieldType, 4> sign_;
108
109 // Edge normals
110 std::array<typename LB::Traits::DomainType, 4> n_;
111 };
112}
113#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE2D_LOCALINTERPOLATION_HH
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:326
First order Raviart-Thomas shape functions on the reference quadrilateral.
Definition: raviartthomas1cube2dlocalinterpolation.hh:26
void interpolate(const F &f, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas1cube2dlocalinterpolation.hh:54
RT1Cube2DLocalInterpolation(std::bitset< 4 > s=0)
Make set number s, where 0 <= s < 16.
Definition: raviartthomas1cube2dlocalinterpolation.hh:34
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:462
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)