3#ifndef DUNE_PDELAB_LINEARELASTIC_HH
4#define DUNE_PDELAB_LINEARELASTIC_HH
6#include "../../MathFunctions/transpose.hh"
8#include <dune/pdelab/localoperator/defaultimp.hh>
9#include <dune/pdelab/localoperator/pattern.hh>
10#include <dune/pdelab/localoperator/flags.hh>
11#include <dune/pdelab/localoperator/idefault.hh>
15 template<
typename GV,
class MODEL,
int dofel>
16 class linearelasticity :
17 public NumericalJacobianApplyVolume<linearelasticity<GV,MODEL,dofel>>,
18 public FullVolumePattern,
19 public LocalOperatorDefaultFlags,
20 public InstationaryLocalOperatorDefaultMethods<double>
24 enum { doPatternVolume =
true };
27 enum { doAlphaVolume =
true };
28 enum { doLambdaVolume =
true };
29 enum { doLambdaBoundary =
true };
32 linearelasticity (
const GV gv_,
const MODEL& myModel_,
int intorder_=2,
double eps_=100) :
33 myModel(myModel_),gv(gv_),intorder(intorder_),eps(eps_)
35 my_rank = gv.comm().rank();
39 template<
typename DuneMatrix1,
typename DuneMatrix2,
typename DuneVector>
40 void BCB(
const unsigned int nodes_per_element, DuneVector &gradphi, DuneMatrix1 &C, DuneMatrix2 &K)
const
42 Dune::FieldMatrix<double,6,dofel> tmp(0.0), B(0.0);
43 for (
unsigned int i = 0; i < nodes_per_element; i++)
45 B[0][i] = gradphi[i][0];
46 B[1][i + nodes_per_element] = gradphi[i][1];
47 B[2][i + 2 * nodes_per_element] = gradphi[i][2];
48 B[3][i + nodes_per_element] = gradphi[i][2]; B[3][i + 2 * nodes_per_element] = gradphi[i][1];
49 B[4][i] = gradphi[i][2]; B[4][i + 2 * nodes_per_element] = gradphi[i][0];
50 B[5][i] = gradphi[i][1]; B[5][i + nodes_per_element] = gradphi[i][0];
54 mm<DuneMatrix1,Dune::FieldMatrix<double,6,dofel>,Dune::FieldMatrix<double,6,dofel>>(C,B,tmp);
57 mtm<Dune::FieldMatrix<double,6,dofel>,Dune::FieldMatrix<double,6,dofel>,DuneMatrix2>(B,tmp,K);
61 template<
typename DuneMatrix,
typename DuneVector1,
typename DuneVector2,
typename DuneVector>
62 void Bdelta(
const unsigned int nodes_per_element, DuneVector1 &gradphi, DuneMatrix &C, DuneVector2 &delta, DuneVector &result)
const
64 Dune::FieldMatrix<double,6,dofel> B(0.0);
65 for (
unsigned int i = 0; i < nodes_per_element; i++)
67 B[0][i] = gradphi[i][0];
68 B[1][i + nodes_per_element] = gradphi[i][1];
69 B[2][i + 2 * nodes_per_element] = gradphi[i][2];
70 B[3][i + nodes_per_element] = gradphi[i][2]; B[3][i + 2 * nodes_per_element] = gradphi[i][1];
71 B[4][i] = gradphi[i][2]; B[4][i + 2 * nodes_per_element] = gradphi[i][0];
72 B[5][i] = gradphi[i][1]; B[5][i + nodes_per_element] = gradphi[i][0];
79 template<
typename EG,
typename LFSU,
typename X,
typename LFSV,
typename M>
80 void jacobian_volume (
const EG& eg,
const LFSU& lfsu,
const X& x,
const LFSV& lfsv, M & mat)
const
86 typedef typename LFSU::template Child<0>::Type LFSU_U1;
87 typedef typename LFSU::template Child<1>::Type LFSU_U2;
88 typedef typename LFSU::template Child<2>::Type LFSU_U3;
90 const LFSU_U1& lfsu_u1 = lfsu.template child<0>();
91 const LFSU_U2& lfsu_u2 = lfsu.template child<1>();
92 const LFSU_U3& lfsu_u3 = lfsu.template child<2>();
94 const unsigned int npe = lfsu_u1.size();
95 assert(npe == dofel/dim);
98 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::DomainFieldType DF;
99 typedef typename M::value_type RF;
100 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::JacobianType JacobianType;
103 GeometryType gt = eg.geometry().type();
104 const QuadratureRule<DF,dim>& rule = QuadratureRules<DF,dim>::rule(gt,myModel.intOrder);
107 int id = gv.indexSet().index(eg.entity());
108 Dune::FieldMatrix<double,6,6> C = myModel.getElasticTensor(
id);
111 Dune::FieldMatrix<double,dofel,dofel> Kh(0.0);
112 for (
typename Dune::QuadratureRule<DF,dim>::const_iterator it = rule.begin(),endit = rule.end(); it != endit; ++it){
114 auto theta = myModel.returnTheta(it->position());
116 auto Ch = myModel.TensorRotation(C, theta[1], 1);
119 Dune::FieldMatrix<double,dofel,dofel> K(0.0);
121 std::vector<JacobianType> js(npe);
122 lfsu_u1.finiteElement().localBasis().evaluateJacobian(it->position(),js);
124 const typename EG::Geometry::JacobianInverseTransposed jac = eg.geometry().jacobianInverseTransposed(it->position());
125 std::vector<Dune::FieldVector<RF,dim> > gradphi(npe);
126 for (
unsigned int i=0; i < npe; i++){
128 jac.umv(js[i][0],gradphi[i]);
130 Dune::FieldMatrix<double,6,dofel> B(0.0);
132 BCB(npe,gradphi,Ch, K);
135 RF factor = it->weight() * eg.geometry().integrationElement(it->position());
141 Dune::FieldMatrix<double,dim,dim> Kij(0.0);
142 for (
unsigned int i = 0; i < npe; i++){
143 for (
unsigned int j = 0; j < npe; j++){
144 Kij = {{Kh[i][j], Kh[i][npe + j], Kh[i][2*npe + j]},
145 {Kh[npe + i][j], Kh[npe + i][npe + j], Kh[npe + i][2*npe + j]},
146 {Kh[2*npe + i][j],Kh[2*npe + i][npe + j], Kh[2*npe + i][2*npe + j]}};
147 mat.accumulate(lfsu_u1,i,lfsu_u1,j,Kij[0][0] );
148 mat.accumulate(lfsu_u1,i,lfsu_u2,j,Kij[0][1] );
149 mat.accumulate(lfsu_u1,i,lfsu_u3,j,Kij[0][2] );
150 mat.accumulate(lfsu_u2,i,lfsu_u1,j,Kij[1][0] );
151 mat.accumulate(lfsu_u2,i,lfsu_u2,j,Kij[1][1]);
152 mat.accumulate(lfsu_u2,i,lfsu_u3,j,Kij[1][2] );
153 mat.accumulate(lfsu_u3,i,lfsu_u1,j,Kij[2][0] );
154 mat.accumulate(lfsu_u3,i,lfsu_u2,j,Kij[2][1] );
155 mat.accumulate(lfsu_u3,i,lfsu_u3,j,Kij[2][2] );
162 template<
typename EG,
typename LFSU,
typename X,
typename LFSV,
typename R>
163 void alpha_volume (
const EG& eg,
const LFSU& lfsu,
const X& x,
const LFSV& lfsv, R& r)
const
169 typedef typename LFSU::template Child<0>::Type LFSU_U1;
170 typedef typename LFSU::template Child<1>::Type LFSU_U2;
171 typedef typename LFSU::template Child<2>::Type LFSU_U3;
173 const LFSU_U1& lfsu_u1 = lfsu.template child<0>();
174 const LFSU_U2& lfsu_u2 = lfsu.template child<1>();
175 const LFSU_U3& lfsu_u3 = lfsu.template child<2>();
177 const unsigned int npe = lfsu_u1.size();
180 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::DomainFieldType DF;
181 typedef typename R::value_type RF;
182 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::JacobianType JacobianType;
185 GeometryType gt = eg.geometry().type();
186 const QuadratureRule<DF,dim>& rule = QuadratureRules<DF,dim>::rule(gt,myModel.intOrder);
188 Dune::FieldMatrix<double,dofel,dofel> K(0.0);
191 FieldVector<double,dofel> u(0.0);
192 for (
unsigned int i=0; i<npe; i++){
194 u[i + npe] = x(lfsu_u2,i);
195 u[i + 2*npe] = x(lfsu_u3,i);
199 int id = gv.indexSet().index(eg.entity());
200 Dune::FieldMatrix<double,6,6> C = myModel.getElasticTensor(
id);
203 for (
typename Dune::QuadratureRule<DF,dim>::const_iterator it = rule.begin(),endit = rule.end(); it != endit; ++it)
206 auto theta = myModel.returnTheta(it->position());
208 auto Ch = myModel.TensorRotation(C, theta[1], 1);
212 std::vector<JacobianType> js(npe);
213 lfsu_u1.finiteElement().localBasis().evaluateJacobian(it->position(),js);
216 const typename EG::Geometry::JacobianInverseTransposed jac = eg.geometry().jacobianInverseTransposed(it->position());
217 std::vector<Dune::FieldVector<RF,dim> > gradphi(npe);
218 for (
unsigned int i=0; i < npe; i++){
220 jac.umv(js[i][0],gradphi[i]);
224 BCB(npe,gradphi,Ch, K);
229 FieldVector<double,dofel> residual(0.0);
232 for (
int i = 0; i < dofel; i++){
233 for (
int j = 0; j < dofel; j++){
234 residual[i] += K[i][j] * u[j];
239 RF factor = it->weight() * eg.geometry().integrationElement(it->position());
241 for (
unsigned int i=0; i < npe; i++){
242 r.accumulate(lfsu_u1,i,residual[i] * factor);
243 r.accumulate(lfsu_u2,i,residual[i + npe] * factor);
244 r.accumulate(lfsu_u3,i,residual[i + 2*npe] * factor);
252 template<
typename EG,
typename LFSV,
typename R>
253 void lambda_volume (
const EG& eg,
const LFSV& lfsv, R& r)
const
259 typedef typename LFSV::template Child<0>::Type LFSV_U1;
260 typedef typename LFSV::template Child<1>::Type LFSV_U2;
261 typedef typename LFSV::template Child<2>::Type LFSV_U3;
263 const LFSV_U1& lfsv_u1 = lfsv.template child<0>();
264 const LFSV_U2& lfsv_u2 = lfsv.template child<1>();
265 const LFSV_U3& lfsv_u3 = lfsv.template child<2>();
267 const unsigned int npe = lfsv_u1.size();
270 typedef typename LFSV_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::DomainFieldType DF;
271 typedef typename R::value_type RF;
272 typedef typename LFSV_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::JacobianType JacobianType;
273 typedef typename LFSV_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::RangeType RT_V;
276 int ele_id = gv.indexSet().index(eg.entity());
279 Dune::FieldVector<double,6> delta(0.0);
281 myModel.evaluateHeat(delta,ele_id);
284 Dune::FieldVector<double,3> f1(0.0);
285 myModel.evaluateWeight(f1,ele_id);
288 GeometryType gt = eg.geometry().type();
289 const QuadratureRule<DF,dim>& rule = QuadratureRules<DF,dim>::rule(gt,myModel.intOrder);
292 int id = gv.indexSet().index(eg.entity());
293 Dune::FieldMatrix<double,6,6> C = myModel.getElasticTensor(
id);
296 for (
typename Dune::QuadratureRule<DF,dim>::const_iterator it = rule.begin(),endit = rule.end(); it != endit; ++it)
299 auto theta = myModel.returnTheta(it->position());
301 auto Ch = myModel.TensorRotation(C, theta[1], 1);
305 std::vector<RT_V> phi(npe);
306 lfsv_u1.finiteElement().localBasis().evaluateFunction(it->position(),phi);
309 std::vector<JacobianType> js(npe);
310 lfsv_u1.finiteElement().localBasis().evaluateJacobian(it->position(),js);
313 const typename EG::Geometry::JacobianInverseTransposed jac = eg.geometry().jacobianInverseTransposed(it->position());
314 std::vector<Dune::FieldVector<RF,dim> > gradphi(npe);
315 for (
unsigned int i=0; i < npe; i++){
317 jac.umv(js[i][0],gradphi[i]);
320 Dune::FieldVector<double,dofel> result;
321 Bdelta(npe,gradphi,Ch, delta, result);
324 RF factor = it->weight() * eg.geometry().integrationElement(it->position());
326 for (
unsigned int i=0; i < npe; i++){
327 r.accumulate(lfsv_u1,i, -(f1[0]*phi[i] + result[i]) * factor);
328 r.accumulate(lfsv_u2,i, -(f1[1]*phi[i] + result[i+npe]) * factor);
329 r.accumulate(lfsv_u3,i, -(f1[2]*phi[i] + result[i+2*npe]) * factor);
337 template<
typename IG,
typename LFSU,
typename X,
typename LFSV,
typename R>
338 void alpha_boundary (
const IG& ig,
339 const LFSU& lfsu_s,
const X& x_s,
const LFSV& lfsv_s,
346 template<
typename IG,
typename LFSU,
typename X,
typename LFSV,
typename LocalMatrix>
347 void jacobian_boundary(
const IG& ig,
348 const LFSU& lfsu,
const X& x,
const LFSV& lfsv,
349 LocalMatrix& mat)
const
354 template<
typename IG,
typename LFSV_HAT,
typename R>
355 void lambda_boundary (
const IG& ig,
const LFSV_HAT& lfsv_hat, R& r)
const
362 typedef typename LFSV_HAT::template Child<0>::Type LFSV_U1;
363 typedef typename LFSV_HAT::template Child<1>::Type LFSV_U2;
364 typedef typename LFSV_HAT::template Child<2>::Type LFSV_U3;
366 const LFSV_U1& lfsv_u1 = lfsv_hat.template child<0>();
367 const LFSV_U2& lfsv_u2 = lfsv_hat.template child<1>();
368 const LFSV_U3& lfsv_u3 = lfsv_hat.template child<2>();
370 const unsigned int npe = lfsv_u1.size();
373 typedef typename LFSV_U1::Traits::FiniteElementType::
374 Traits::LocalBasisType::Traits::DomainFieldType DF;
375 typedef typename R::value_type RF;
376 typedef typename LFSV_U1::Traits::FiniteElementType::
377 Traits::LocalBasisType::Traits::RangeType RT_V;
380 GeometryType gtface = ig.geometry().type();
381 const QuadratureRule<DF,dim-1>& rule = QuadratureRules<DF,dim-1>::rule(gtface,intorder);
384 for (
typename Dune::QuadratureRule<DF,dim-1>::const_iterator it = rule.begin(), endit = rule.end();it != endit;++it)
387 Dune::FieldVector<DF,dim> local = ig.geometryInInside().global(it->position());
390 std::vector<RT_V> phi(npe);
391 lfsv_u1.finiteElement().localBasis().evaluateFunction(local,phi);
394 const RF factor = it->weight() * ig.geometry().integrationElement(it->position());
395 const Dune::FieldVector<DF,dimw> normal = ig.unitOuterNormal(it->position());
397 Dune::FieldVector<DF,dimw> neumann_stress(0.0);
398 myModel.evaluateNeumann(ig.geometry().global(it->position()),neumann_stress,normal);
399 for (
size_t i=0; i < npe; i++){
400 r.accumulate(lfsv_u1,i, neumann_stress[0] * phi[i] * factor);
401 r.accumulate(lfsv_u2,i, neumann_stress[1] * phi[i] * factor);
402 r.accumulate(lfsv_u3,i, neumann_stress[2] * phi[i] * factor);
409 template<
typename Matrix1,
typename Matrix2,
typename Matrix3>
410 void mm(Matrix1& A, Matrix2&B, Matrix3& C)
const
412 int a1 = A.N();
int a2 = A.M();
413 int b1 = B.N();
int b2 = B.M();
416 for (
int i = 0; i < a1; i++){
417 for (
int j = 0; j < b2; j++){
418 for (
int k = 0; k < a2; k++){
419 C[i][j] += A[i][k] * B[k][j];
425 template<
typename Matrix1,
typename Matrix2,
typename Matrix3>
426 void mtm(Matrix1& A, Matrix2&B, Matrix3& C)
const
429 int a1 = A.N();
int a2 = A.M();
430 int b1 = B.N();
int b2 = B.M();
433 for (
int i = 0; i < a2; i++){
434 for (
int j = 0; j < b2; j++){
435 for (
int k = 0; k < a1; k++){
436 C[i][j] += A[k][i] * B[k][j];
444 template<
typename Matrix>
445 void hourglass_control(Matrix & Kh)
const{
446 if(dofel != 24){std::cout <<
"Warning: hourglass control not implemented for this case";}
447 Dune::FieldMatrix<double,dofel,dofel> v(0.0),vT(0.0);
449 { 1, 0, 0, 0, -1, 1, -1, 0, 0, -1, -1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0},
450 { 1, 0, 0, 0, -1, 1, 1, 0, 0, -1, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0},
451 { 1, 0, 0, 0, -1, -1, -1, 0, 0, 1, -1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0},
452 { 1, 0, 0, 0, -1, -1, 1, 0, 0, 1, -1, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0},
453 { 1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0},
454 { 1, 0, 0, 0, 1, 1, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0},
455 { 1, 0, 0, 0, 1, -1, -1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0},
456 { 1, 0, 0, 0, 1, -1, 1, 0, 0, 1, 1, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0},
457 { 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0},
458 { 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0},
459 { 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0},
460 { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0},
461 { 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0},
462 { 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0},
463 { 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0},
464 { 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0},
465 { 0, 0, 1, -1, 1, 0, 0, 0, -1, 0, -1, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1},
466 { 0, 0, 1, -1, -1, 0, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1},
467 { 0, 0, 1, 1, 1, 0, 0, 0, -1, 0, -1, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1},
468 { 0, 0, 1, 1, -1, 0, 0, 0, -1, 0, 1, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1},
469 { 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 1},
470 { 0, 0, 1, -1, -1, 0, 0, 0, 1, 0, 1, -1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1},
471 { 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, -1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1},
472 { 0, 0, 1, 1, -1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1}
475 for(
int m=0; m< dofel; m++){
477 for(
int j=0; j< dofel; j++){
478 sum+=v[j][m]*v[j][m];
480 for(
int j=0; j< dofel; j++){
481 v[j][m]*=sqrt(1./sum);
485 Composites::transpose<Dune::FieldMatrix<double,dofel,dofel>, dofel>(v,vT);
490 for(
int i = 12; i < dofel; i++){
494 Kh.rightmultiply(vT);
498 const MODEL& myModel;