Loading [MathJax]/extensions/tex2jax.js

dune-composites (unstable)

linearelasticity.hh
1// -*- tab-width: 4; indent-tabs-mode: nil -*-
2// vi: set et ts=4 sw=4 sts=4:
3#ifndef DUNE_PDELAB_LINEARELASTIC_HH
4#define DUNE_PDELAB_LINEARELASTIC_HH
5
6#include "../../MathFunctions/transpose.hh"
7
8#include <dune/pdelab/localoperator/defaultimp.hh>
9#include <dune/pdelab/localoperator/pattern.hh>
10#include <dune/pdelab/localoperator/flags.hh>
11#include <dune/pdelab/localoperator/idefault.hh>
12
13namespace Dune {
14 namespace PDELab {
15 template<typename GV, class MODEL, int dofel>
16 class linearelasticity :
17 public NumericalJacobianApplyVolume<linearelasticity<GV,MODEL,dofel>>,
18 public FullVolumePattern,
19 public LocalOperatorDefaultFlags,
20 public InstationaryLocalOperatorDefaultMethods<double>
21 {
22 public:
23 // pattern assembly flags
24 enum { doPatternVolume = true };
25
26 // residual assembly flags
27 enum { doAlphaVolume = true };
28 enum { doLambdaVolume = true };
29 enum { doLambdaBoundary = true };
30
31 //constructor
32 linearelasticity (const GV gv_, const MODEL& myModel_, int intorder_=2, double eps_=100) :
33 myModel(myModel_),gv(gv_),intorder(intorder_),eps(eps_)
34 {
35 my_rank = gv.comm().rank();
36 }
37
38 //Write the local stiffness matrix
39 template<typename DuneMatrix1,typename DuneMatrix2, typename DuneVector>
40 void BCB(const unsigned int nodes_per_element, DuneVector &gradphi, DuneMatrix1 &C, DuneMatrix2 &K) const
41 {
42 Dune::FieldMatrix<double,6,dofel> tmp(0.0), B(0.0);
43 for (unsigned int i = 0; i < nodes_per_element; i++)
44 {
45 B[0][i] = gradphi[i][0]; // E11
46 B[1][i + nodes_per_element] = gradphi[i][1]; // E22
47 B[2][i + 2 * nodes_per_element] = gradphi[i][2]; // E22
48 B[3][i + nodes_per_element] = gradphi[i][2]; B[3][i + 2 * nodes_per_element] = gradphi[i][1]; // E23
49 B[4][i] = gradphi[i][2]; B[4][i + 2 * nodes_per_element] = gradphi[i][0]; // E13
50 B[5][i] = gradphi[i][1]; B[5][i + nodes_per_element] = gradphi[i][0]; // E12
51 }
52
53 //tmp = C * B
54 mm<DuneMatrix1,Dune::FieldMatrix<double,6,dofel>,Dune::FieldMatrix<double,6,dofel>>(C,B,tmp);
55
56 // K = B' * tmp = B' * C * B
57 mtm<Dune::FieldMatrix<double,6,dofel>,Dune::FieldMatrix<double,6,dofel>,DuneMatrix2>(B,tmp,K);
58 } //end BCB
59
60 //Write the local stiffness matrix
61 template<typename DuneMatrix, typename DuneVector1, typename DuneVector2, typename DuneVector>
62 void Bdelta(const unsigned int nodes_per_element, DuneVector1 &gradphi, DuneMatrix &C, DuneVector2 &delta, DuneVector &result) const
63 {
64 Dune::FieldMatrix<double,6,dofel> B(0.0);
65 for (unsigned int i = 0; i < nodes_per_element; i++)
66 {
67 B[0][i] = gradphi[i][0]; // E11
68 B[1][i + nodes_per_element] = gradphi[i][1]; // E22
69 B[2][i + 2 * nodes_per_element] = gradphi[i][2]; // E22
70 B[3][i + nodes_per_element] = gradphi[i][2]; B[3][i + 2 * nodes_per_element] = gradphi[i][1]; // E23
71 B[4][i] = gradphi[i][2]; B[4][i + 2 * nodes_per_element] = gradphi[i][0]; // E13
72 B[5][i] = gradphi[i][1]; B[5][i + nodes_per_element] = gradphi[i][0]; // E12
73 }
74 DuneVector2 tmp(0.0);
75 C.mv(delta,tmp);
76 B.mtv(tmp,result);
77 } //end Bdelta
78
79 template<typename EG, typename LFSU, typename X, typename LFSV, typename M>
80 void jacobian_volume (const EG& eg, const LFSU& lfsu, const X& x, const LFSV& lfsv, M & mat) const
81 {
82 // dimensions
83 const int dim = 3;
84
85 // extract local function spaces
86 typedef typename LFSU::template Child<0>::Type LFSU_U1;
87 typedef typename LFSU::template Child<1>::Type LFSU_U2;
88 typedef typename LFSU::template Child<2>::Type LFSU_U3;
89
90 const LFSU_U1& lfsu_u1 = lfsu.template child<0>();
91 const LFSU_U2& lfsu_u2 = lfsu.template child<1>();
92 const LFSU_U3& lfsu_u3 = lfsu.template child<2>();
93
94 const unsigned int npe = lfsu_u1.size();
95 assert(npe == dofel/dim); // ensure dof per element are set correctly
96
97 // domain and range field type
98 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::DomainFieldType DF;
99 typedef typename M::value_type RF;
100 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::JacobianType JacobianType;
101
102 // select quadrature rule
103 GeometryType gt = eg.geometry().type();
104 const QuadratureRule<DF,dim>& rule = QuadratureRules<DF,dim>::rule(gt,myModel.intOrder);
105
106 // Evaluate elasticity tensor
107 int id = gv.indexSet().index(eg.entity());
108 Dune::FieldMatrix<double,6,6> C = myModel.getElasticTensor(id);
109
110
111 Dune::FieldMatrix<double,dofel,dofel> Kh(0.0);
112 for (typename Dune::QuadratureRule<DF,dim>::const_iterator it = rule.begin(),endit = rule.end(); it != endit; ++it){
113 //Rotate material tensor
114 auto theta = myModel.returnTheta(it->position());
115 //auto Ch = rotate(C, theta, 2); //rotate the stacking sequence first
116 auto Ch = myModel.TensorRotation(C, theta[1], 1); //then geometry rotation
117 //Ch = rotate(C, theta, 0);
118
119 Dune::FieldMatrix<double,dofel,dofel> K(0.0);
120 // Evaluate Jacobian
121 std::vector<JacobianType> js(npe);
122 lfsu_u1.finiteElement().localBasis().evaluateJacobian(it->position(),js);
123 // Transform gradient to real element
124 const typename EG::Geometry::JacobianInverseTransposed jac = eg.geometry().jacobianInverseTransposed(it->position());
125 std::vector<Dune::FieldVector<RF,dim> > gradphi(npe);
126 for (unsigned int i=0; i < npe; i++){
127 gradphi[i] = 0.0;
128 jac.umv(js[i][0],gradphi[i]);
129 }
130 Dune::FieldMatrix<double,6,dofel> B(0.0);
131 //Fill in stiffness matrix
132 BCB(npe,gradphi,Ch, K);
133
134 // Integration Point Weight
135 RF factor = it->weight() * eg.geometry().integrationElement(it->position());
136 K *= factor;
137 Kh += K;
138 } // end for-each quadrature point
139 //if(intorder == 1) hourglass_control<Dune::FieldMatrix<double,dofel,dofel>>(Kh);
140
141 Dune::FieldMatrix<double,dim,dim> Kij(0.0);
142 for (unsigned int i = 0; i < npe; i++){
143 for (unsigned int j = 0; j < npe; j++){
144 Kij = {{Kh[i][j], Kh[i][npe + j], Kh[i][2*npe + j]},
145 {Kh[npe + i][j], Kh[npe + i][npe + j], Kh[npe + i][2*npe + j]},
146 {Kh[2*npe + i][j],Kh[2*npe + i][npe + j], Kh[2*npe + i][2*npe + j]}};
147 mat.accumulate(lfsu_u1,i,lfsu_u1,j,Kij[0][0] );
148 mat.accumulate(lfsu_u1,i,lfsu_u2,j,Kij[0][1] );
149 mat.accumulate(lfsu_u1,i,lfsu_u3,j,Kij[0][2] );
150 mat.accumulate(lfsu_u2,i,lfsu_u1,j,Kij[1][0] );
151 mat.accumulate(lfsu_u2,i,lfsu_u2,j,Kij[1][1]);
152 mat.accumulate(lfsu_u2,i,lfsu_u3,j,Kij[1][2] );
153 mat.accumulate(lfsu_u3,i,lfsu_u1,j,Kij[2][0] );
154 mat.accumulate(lfsu_u3,i,lfsu_u2,j,Kij[2][1] );
155 mat.accumulate(lfsu_u3,i,lfsu_u3,j,Kij[2][2] );
156 } // end for j
157 } // end for i
158 } // end jacobian_volume
159
160
161 // volume integral depending on test and ansatz functions
162 template<typename EG, typename LFSU, typename X, typename LFSV, typename R>
163 void alpha_volume (const EG& eg, const LFSU& lfsu, const X& x, const LFSV& lfsv, R& r) const
164 {
165 // dimensions
166 const int dim = 3;
167
168 // extract local function spaces
169 typedef typename LFSU::template Child<0>::Type LFSU_U1;
170 typedef typename LFSU::template Child<1>::Type LFSU_U2;
171 typedef typename LFSU::template Child<2>::Type LFSU_U3;
172
173 const LFSU_U1& lfsu_u1 = lfsu.template child<0>();
174 const LFSU_U2& lfsu_u2 = lfsu.template child<1>();
175 const LFSU_U3& lfsu_u3 = lfsu.template child<2>();
176
177 const unsigned int npe = lfsu_u1.size();
178
179 // domain and range field type
180 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::DomainFieldType DF;
181 typedef typename R::value_type RF;
182 typedef typename LFSU_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::JacobianType JacobianType;
183
184 // select quadrature rule
185 GeometryType gt = eg.geometry().type();
186 const QuadratureRule<DF,dim>& rule = QuadratureRules<DF,dim>::rule(gt,myModel.intOrder);
187
188 Dune::FieldMatrix<double,dofel,dofel> K(0.0);
189
190 // Unwrap u
191 FieldVector<double,dofel> u(0.0);
192 for (unsigned int i=0; i<npe; i++){
193 u[i] = x(lfsu_u1,i);
194 u[i + npe] = x(lfsu_u2,i);
195 u[i + 2*npe] = x(lfsu_u3,i);
196 }
197
198 // Evaluate elasticity tensor
199 int id = gv.indexSet().index(eg.entity());
200 Dune::FieldMatrix<double,6,6> C = myModel.getElasticTensor(id);
201
202 // Loop over quadrature points
203 for (typename Dune::QuadratureRule<DF,dim>::const_iterator it = rule.begin(),endit = rule.end(); it != endit; ++it)
204 {
205 //Rotate material tensor
206 auto theta = myModel.returnTheta(it->position());
207 //auto Ch = rotate(C, theta, 2); //rotate the stacking sequence first
208 auto Ch = myModel.TensorRotation(C, theta[1], 1); //then geometry rotation
209 //Ch = rotate(C, theta, 0);
210
211 // Evaluate Jacobian
212 std::vector<JacobianType> js(npe);
213 lfsu_u1.finiteElement().localBasis().evaluateJacobian(it->position(),js);
214
215 // Transform gradient to real element
216 const typename EG::Geometry::JacobianInverseTransposed jac = eg.geometry().jacobianInverseTransposed(it->position());
217 std::vector<Dune::FieldVector<RF,dim> > gradphi(npe);
218 for (unsigned int i=0; i < npe; i++){
219 gradphi[i] = 0.0;
220 jac.umv(js[i][0],gradphi[i]);
221 }
222
223 //Fill in stiffness matrix
224 BCB(npe,gradphi,Ch, K);
225
226 // if(intorder == 1) hourglass_control<Dune::FieldMatrix<double,dofel,dofel>>(K);
227
228 // Compute residual = K * U - checked
229 FieldVector<double,dofel> residual(0.0);
230
231
232 for (int i = 0; i < dofel; i++){
233 for (int j = 0; j < dofel; j++){
234 residual[i] += K[i][j] * u[j];
235 }
236 }
237
238 // geometric weight
239 RF factor = it->weight() * eg.geometry().integrationElement(it->position());
240
241 for (unsigned int i=0; i < npe; i++){
242 r.accumulate(lfsu_u1,i,residual[i] * factor);
243 r.accumulate(lfsu_u2,i,residual[i + npe] * factor);
244 r.accumulate(lfsu_u3,i,residual[i + 2*npe] * factor);
245 }
246
247 } // end for each quadrature point
248
249 } // end alpha_volume
250
251 // volume integral depending only on test functions
252 template<typename EG, typename LFSV, typename R>
253 void lambda_volume (const EG& eg, const LFSV& lfsv, R& r) const
254 {
255 // dimensions
256 const int dim = 3;
257
258 // extract local function spaces
259 typedef typename LFSV::template Child<0>::Type LFSV_U1;
260 typedef typename LFSV::template Child<1>::Type LFSV_U2;
261 typedef typename LFSV::template Child<2>::Type LFSV_U3;
262
263 const LFSV_U1& lfsv_u1 = lfsv.template child<0>();
264 const LFSV_U2& lfsv_u2 = lfsv.template child<1>();
265 const LFSV_U3& lfsv_u3 = lfsv.template child<2>();
266
267 const unsigned int npe = lfsv_u1.size();
268
269 // domain and range field type
270 typedef typename LFSV_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::DomainFieldType DF;
271 typedef typename R::value_type RF;
272 typedef typename LFSV_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::JacobianType JacobianType;
273 typedef typename LFSV_U1::Traits::FiniteElementType::Traits::LocalBasisType::Traits::RangeType RT_V;
274
275
276 int ele_id = gv.indexSet().index(eg.entity());
277
278 //Get input heat strains
279 Dune::FieldVector<double,6> delta(0.0);
280
281 myModel.evaluateHeat(delta,ele_id);
282
283 //Get input forcing term
284 Dune::FieldVector<double,3> f1(0.0);
285 myModel.evaluateWeight(f1,ele_id);
286
287 // select quadrature rule
288 GeometryType gt = eg.geometry().type();
289 const QuadratureRule<DF,dim>& rule = QuadratureRules<DF,dim>::rule(gt,myModel.intOrder);
290
291 // Evaluate elasticity tensor
292 int id = gv.indexSet().index(eg.entity());
293 Dune::FieldMatrix<double,6,6> C = myModel.getElasticTensor(id);
294
295 // Loop over quadrature points
296 for (typename Dune::QuadratureRule<DF,dim>::const_iterator it = rule.begin(),endit = rule.end(); it != endit; ++it)
297 {
298 //Rotate material tensor
299 auto theta = myModel.returnTheta(it->position());
300 //auto Ch = rotate(C, theta, 2); //rotate the stacking sequence first
301 auto Ch = myModel.TensorRotation(C, theta[1], 1); //then geometry rotation
302 //Ch = rotate(C, theta, 0);
303
304 //Shape functions
305 std::vector<RT_V> phi(npe);
306 lfsv_u1.finiteElement().localBasis().evaluateFunction(it->position(),phi);
307
308 // Evaluate Jacobian
309 std::vector<JacobianType> js(npe);
310 lfsv_u1.finiteElement().localBasis().evaluateJacobian(it->position(),js);
311
312 // Transform gradient to real element
313 const typename EG::Geometry::JacobianInverseTransposed jac = eg.geometry().jacobianInverseTransposed(it->position());
314 std::vector<Dune::FieldVector<RF,dim> > gradphi(npe);
315 for (unsigned int i=0; i < npe; i++){
316 gradphi[i] = 0.0;
317 jac.umv(js[i][0],gradphi[i]);
318 }
319
320 Dune::FieldVector<double,dofel> result;
321 Bdelta(npe,gradphi,Ch, delta, result);
322
323 // geometric weight
324 RF factor = it->weight() * eg.geometry().integrationElement(it->position());
325
326 for (unsigned int i=0; i < npe; i++){
327 r.accumulate(lfsv_u1,i, -(f1[0]*phi[i] + result[i]) * factor);
328 r.accumulate(lfsv_u2,i, -(f1[1]*phi[i] + result[i+npe]) * factor);
329 r.accumulate(lfsv_u3,i, -(f1[2]*phi[i] + result[i+2*npe]) * factor);
330 }
331 } // end loop over quadrature points
332 } // end lambda_volume
333
334
335#if 0
336 // boundary integral
337 template<typename IG, typename LFSU, typename X, typename LFSV, typename R>
338 void alpha_boundary (const IG& ig,
339 const LFSU& lfsu_s, const X& x_s, const LFSV& lfsv_s,
340 R& r_s) const
341 {
342 }
343#endif
344
345 // dummy jacobian_boundary for local operator to assemble only in the overlap with other subdomains
346 template<typename IG, typename LFSU, typename X, typename LFSV, typename LocalMatrix>
347 void jacobian_boundary(const IG& ig,
348 const LFSU& lfsu, const X& x, const LFSV& lfsv,
349 LocalMatrix& mat) const
350 {
351 }
352
353 // jacobian of boundary term
354 template<typename IG, typename LFSV_HAT, typename R>
355 void lambda_boundary (const IG& ig, const LFSV_HAT& lfsv_hat, R& r) const
356 {
357 // dimensions
358 const int dim = 3;
359 const int dimw = 3;
360
361 // extract local function spaces
362 typedef typename LFSV_HAT::template Child<0>::Type LFSV_U1;
363 typedef typename LFSV_HAT::template Child<1>::Type LFSV_U2;
364 typedef typename LFSV_HAT::template Child<2>::Type LFSV_U3;
365
366 const LFSV_U1& lfsv_u1 = lfsv_hat.template child<0>();
367 const LFSV_U2& lfsv_u2 = lfsv_hat.template child<1>();
368 const LFSV_U3& lfsv_u3 = lfsv_hat.template child<2>();
369
370 const unsigned int npe = lfsv_u1.size();
371
372 // domain and range field type
373 typedef typename LFSV_U1::Traits::FiniteElementType::
374 Traits::LocalBasisType::Traits::DomainFieldType DF;
375 typedef typename R::value_type RF;
376 typedef typename LFSV_U1::Traits::FiniteElementType::
377 Traits::LocalBasisType::Traits::RangeType RT_V;
378
379 // select quadrature rule
380 GeometryType gtface = ig.geometry().type();
381 const QuadratureRule<DF,dim-1>& rule = QuadratureRules<DF,dim-1>::rule(gtface,intorder);
382
383 // loop over quadrature points and integrate normal flux
384 for (typename Dune::QuadratureRule<DF,dim-1>::const_iterator it = rule.begin(), endit = rule.end();it != endit;++it)
385 {
386 // position of quadrature point in local coordinates of element
387 Dune::FieldVector<DF,dim> local = ig.geometryInInside().global(it->position());
388
389 // evaluate basis functions
390 std::vector<RT_V> phi(npe);
391 lfsv_u1.finiteElement().localBasis().evaluateFunction(local,phi);
392
393 // Compute Weight Factor
394 const RF factor = it->weight() * ig.geometry().integrationElement(it->position());
395 const Dune::FieldVector<DF,dimw> normal = ig.unitOuterNormal(it->position());
396 // evaluate flux boundary condition - needs updating
397 Dune::FieldVector<DF,dimw> neumann_stress(0.0);
398 myModel.evaluateNeumann(ig.geometry().global(it->position()),neumann_stress,normal);
399 for (size_t i=0; i < npe; i++){
400 r.accumulate(lfsv_u1,i, neumann_stress[0] * phi[i] * factor);
401 r.accumulate(lfsv_u2,i, neumann_stress[1] * phi[i] * factor);
402 r.accumulate(lfsv_u3,i, neumann_stress[2] * phi[i] * factor);
403
404 }
405 }
406 }
407
408 private:
409 template<typename Matrix1, typename Matrix2, typename Matrix3>
410 void mm(Matrix1& A, Matrix2&B, Matrix3& C) const
411 {
412 int a1 = A.N(); int a2 = A.M();
413 int b1 = B.N(); int b2 = B.M();
414 assert(a2 == b1);
415 C = 0.0;
416 for (int i = 0; i < a1; i++){
417 for (int j = 0; j < b2; j++){
418 for (int k = 0; k < a2; k++){
419 C[i][j] += A[i][k] * B[k][j];
420 }
421 }
422 }
423 }
424
425 template<typename Matrix1, typename Matrix2, typename Matrix3>
426 void mtm(Matrix1& A, Matrix2&B, Matrix3& C) const
427 {
428
429 int a1 = A.N(); int a2 = A.M();
430 int b1 = B.N(); int b2 = B.M();
431 assert(a1 == b1);
432 C = 0.0;
433 for (int i = 0; i < a2; i++){
434 for (int j = 0; j < b2; j++){
435 for (int k = 0; k < a1; k++){
436 C[i][j] += A[k][i] * B[k][j];
437 }
438 }
439 }
440 }
441
442
443
444 template<typename Matrix>
445 void hourglass_control(Matrix & Kh) const{
446 if(dofel != 24){std::cout << "Warning: hourglass control not implemented for this case";}
447 Dune::FieldMatrix<double,dofel,dofel> v(0.0),vT(0.0);
448 v = {
449 { 1, 0, 0, 0, -1, 1, -1, 0, 0, -1, -1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0},
450 { 1, 0, 0, 0, -1, 1, 1, 0, 0, -1, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0},
451 { 1, 0, 0, 0, -1, -1, -1, 0, 0, 1, -1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0},
452 { 1, 0, 0, 0, -1, -1, 1, 0, 0, 1, -1, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0},
453 { 1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0},
454 { 1, 0, 0, 0, 1, 1, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0},
455 { 1, 0, 0, 0, 1, -1, -1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0},
456 { 1, 0, 0, 0, 1, -1, 1, 0, 0, 1, 1, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0},
457 { 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0},
458 { 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0},
459 { 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0},
460 { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0},
461 { 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0},
462 { 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0},
463 { 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0},
464 { 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0},
465 { 0, 0, 1, -1, 1, 0, 0, 0, -1, 0, -1, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1},
466 { 0, 0, 1, -1, -1, 0, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1},
467 { 0, 0, 1, 1, 1, 0, 0, 0, -1, 0, -1, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1},
468 { 0, 0, 1, 1, -1, 0, 0, 0, -1, 0, 1, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1},
469 { 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 1},
470 { 0, 0, 1, -1, -1, 0, 0, 0, 1, 0, 1, -1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1},
471 { 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, -1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1},
472 { 0, 0, 1, 1, -1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1}
473 };
474 //Normalise
475 for(int m=0; m< dofel; m++){
476 double sum = 0;
477 for(int j=0; j< dofel; j++){
478 sum+=v[j][m]*v[j][m];
479 }
480 for(int j=0; j< dofel; j++){
481 v[j][m]*=sqrt(1./sum);
482 }
483
484 }
485 Composites::transpose<Dune::FieldMatrix<double,dofel,dofel>, dofel>(v,vT);
486 //Diagonalise matrix
487 Kh.rightmultiply(v);
488 Kh.leftmultiply(vT);
489 //Remove improper nullspace
490 for(int i = 12; i < dofel; i++){
491 Kh[i][i] = eps;
492 }
493 //Return to initial basis
494 Kh.rightmultiply(vT);
495 Kh.leftmultiply(v);
496 }
497
498 const MODEL& myModel;
499 const GV gv;
500 //const typename GV::IndexSet& is;
501 int intorder;
502 double eps;
503 int my_rank;
504 };
505
506 }
507}
508#endif
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden & Uni Heidelberg  |  generated with Hugo v0.111.3 (Apr 3, 22:46, 2025)