Dune Core Modules (2.9.1)

nedelec1stkindsimplex.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_NEDELEC_NEDELEC1STKINDSIMPLEX_HH
6#define DUNE_LOCALFUNCTIONS_NEDELEC_NEDELEC1STKINDSIMPLEX_HH
7
8#include <numeric>
9
12
13#include <dune/geometry/referenceelements.hh>
14#include <dune/geometry/type.hh>
15
16#include <dune/localfunctions/common/localbasis.hh>
17#include <dune/localfunctions/common/localfiniteelementtraits.hh>
18#include <dune/localfunctions/common/localinterpolation.hh> // For deprecated makeFunctionWithCallOperator
19#include <dune/localfunctions/common/localkey.hh>
20
21namespace Dune
22{
23namespace Impl
24{
35 template<class D, class R, int dim, int k>
36 class Nedelec1stKindSimplexLocalBasis
37 {
38 // Number of edges of the reference simplex
39 constexpr static std::size_t numberOfEdges = dim*(dim+1)/2;
40
41 public:
42 using Traits = LocalBasisTraits<D,dim,FieldVector<D,dim>,
43 R,dim,FieldVector<R,dim>,
44 FieldMatrix<R,dim,dim> >;
45
52 Nedelec1stKindSimplexLocalBasis()
53 {
54 std::fill(edgeOrientation_.begin(), edgeOrientation_.end(), 1.0);
55 }
56
59 Nedelec1stKindSimplexLocalBasis(std::bitset<numberOfEdges> edgeOrientation)
60 : Nedelec1stKindSimplexLocalBasis()
61 {
62 for (std::size_t i=0; i<edgeOrientation_.size(); i++)
63 edgeOrientation_[i] *= edgeOrientation[i] ? -1.0 : 1.0;
64 }
65
67 static constexpr unsigned int size()
68 {
69 static_assert(dim==2 || dim==3, "Nedelec shape functions are implemented only for 2d and 3d simplices.");
70 if (dim==2)
71 return k * (k+2);
72 if (dim==3)
73 return k * (k+2) * (k+3) / 2;
74 }
75
81 void evaluateFunction(const typename Traits::DomainType& in,
82 std::vector<typename Traits::RangeType>& out) const
83 {
84 static_assert(k==1, "Evaluating Nédélec shape functions is implemented only for first order.");
85 out.resize(size());
86
87 if (dim==2)
88 {
89 // First-order Nédélec shape functions on a triangle are of the form
90 //
91 // (a1, a2) + b(-x2, x1)^T, a_1, a_2, b \in R
92 out[0] = {D(1) - in[1], in[0]};
93 out[1] = {in[1], -in[0]+D(1)};
94 out[2] = {-in[1], in[0]};
95 }
96
97 if constexpr (dim==3)
98 {
99 // First-order Nédélec shape functions on a tetrahedron are of the form
100 //
101 // a + b \times x, a, b \in R^3
102 //
103 // The following coefficients create the six basis vectors
104 // that are dual to the edge degrees of freedom:
105 //
106 // a[0] = { 1, 0, 0} b[0] = { 0, -1, 1}
107 // a[1] = { 0, 1, 0} b[1] = { 1, 0, -1}
108 // a[2] = { 0, 0, 0} b[2] = { 0, 0, 1}
109 // a[3] = { 0, 0, 1} b[3] = {-1, 1, 0}
110 // a[4] = { 0, 0, 0} b[4] = { 0, -1, 0}
111 // a[5] = { 0, 0, 0} b[5] = { 1, 0, 0}
112 //
113 // The following implementation uses these values, and simply
114 // skips all the zeros.
115
116 out[0] = { 1 - in[1] - in[2], in[0] , in[0] };
117 out[1] = { in[1] , 1 - in[0] - in[2], in[1]};
118 out[2] = { - in[1] , in[0] , 0 };
119 out[3] = { in[2], in[2], 1 - in[0] - in[1]};
120 out[4] = { -in[2], 0 , in[0] };
121 out[5] = { 0 , -in[2], in[1]};
122 }
123
124 for (std::size_t i=0; i<out.size(); i++)
125 out[i] *= edgeOrientation_[i];
126 }
127
133 void evaluateJacobian(const typename Traits::DomainType& in,
134 std::vector<typename Traits::JacobianType>& out) const
135 {
136 out.resize(size());
137 if (dim==2)
138 {
139 out[0][0] = { 0, -1};
140 out[0][1] = { 1, 0};
141
142 out[1][0] = { 0, 1};
143 out[1][1] = {-1, 0};
144
145 out[2][0] = { 0, -1};
146 out[2][1] = { 1, 0};
147 }
148 if (dim==3)
149 {
150 out[0][0] = { 0,-1,-1};
151 out[0][1] = { 1, 0, 0};
152 out[0][2] = { 1, 0, 0};
153
154 out[1][0] = { 0, 1, 0};
155 out[1][1] = {-1, 0, -1};
156 out[1][2] = { 0, 1, 0};
157
158 out[2][0] = { 0, -1, 0};
159 out[2][1] = { 1, 0, 0};
160 out[2][2] = { 0, 0, 0};
161
162 out[3][0] = { 0, 0, 1};
163 out[3][1] = { 0, 0, 1};
164 out[3][2] = {-1, -1, 0};
165
166 out[4][0] = { 0, 0, -1};
167 out[4][1] = { 0, 0, 0};
168 out[4][2] = { 1, 0, 0};
169
170 out[5][0] = { 0, 0, 0};
171 out[5][1] = { 0, 0, -1};
172 out[5][2] = { 0, 1, 0};
173 }
174
175 for (std::size_t i=0; i<out.size(); i++)
176 out[i] *= edgeOrientation_[i];
177
178 }
179
186 void partial(const std::array<unsigned int, dim>& order,
187 const typename Traits::DomainType& in,
188 std::vector<typename Traits::RangeType>& out) const
189 {
190 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
191 if (totalOrder == 0) {
192 evaluateFunction(in, out);
193 } else if (totalOrder == 1) {
194 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
195 out.resize(size());
196
197 if (dim==2)
198 {
199 if (direction==0)
200 {
201 out[0] = {0, 1};
202 out[1] = {0, -1};
203 out[2] = {0, 1};
204 }
205 else
206 {
207 out[0] = {-1, 0};
208 out[1] = { 1, 0};
209 out[2] = {-1, 0};
210 }
211 }
212
213 if (dim==3)
214 {
215 switch (direction)
216 {
217 case 0:
218 out[0] = { 0, 1, 1};
219 out[1] = { 0,-1, 0};
220 out[2] = { 0, 1, 0};
221 out[3] = { 0, 0,-1};
222 out[4] = { 0, 0, 1};
223 out[5] = { 0, 0, 0};
224 break;
225
226 case 1:
227 out[0] = {-1, 0, 0};
228 out[1] = { 1, 0, 1};
229 out[2] = {-1, 0, 0};
230 out[3] = { 0, 0,-1};
231 out[4] = { 0, 0, 0};
232 out[5] = { 0, 0, 1};
233 break;
234
235 case 2:
236 out[0] = {-1, 0, 0};
237 out[1] = { 0,-1, 0};
238 out[2] = { 0, 0, 0};
239 out[3] = { 1, 1, 0};
240 out[4] = {-1, 0, 0};
241 out[5] = { 0,-1, 0};
242 break;
243 }
244 }
245
246 for (std::size_t i=0; i<out.size(); i++)
247 out[i] *= edgeOrientation_[i];
248
249 } else {
250 out.resize(size());
251 for (std::size_t i = 0; i < size(); ++i)
252 for (std::size_t j = 0; j < dim; ++j)
253 out[i][j] = 0;
254 }
255
256 }
257
259 unsigned int order() const
260 {
261 return k;
262 }
263
264 private:
265
266 // Orientations of the simplex edges
267 std::array<R,numberOfEdges> edgeOrientation_;
268 };
269
270
275 template <int dim, int k>
276 class Nedelec1stKindSimplexLocalCoefficients
277 {
278 public:
280 Nedelec1stKindSimplexLocalCoefficients ()
281 : localKey_(size())
282 {
283 static_assert(k==1, "Only first-order Nédélec local coefficients are implemented.");
284 // Assign all degrees of freedom to edges
285 // TODO: This is correct only for first-order Nédélec elements
286 for (std::size_t i=0; i<size(); i++)
287 localKey_[i] = LocalKey(i,dim-1,0);
288 }
289
291 std::size_t size() const
292 {
293 static_assert(dim==2 || dim==3, "Nédélec shape functions are implemented only for 2d and 3d simplices.");
294 return (dim==2) ? k * (k+2)
295 : k * (k+2) * (k+3) / 2;
296 }
297
300 const LocalKey& localKey (std::size_t i) const
301 {
302 return localKey_[i];
303 }
304
305 private:
306 std::vector<LocalKey> localKey_;
307 };
308
313 template<class LB>
314 class Nedelec1stKindSimplexLocalInterpolation
315 {
316 static constexpr auto dim = LB::Traits::dimDomain;
317 static constexpr auto size = LB::size();
318
319 // Number of edges of the reference simplex
320 constexpr static std::size_t numberOfEdges = dim*(dim+1)/2;
321
322 public:
323
325 Nedelec1stKindSimplexLocalInterpolation (std::bitset<numberOfEdges> s = 0)
326 {
327 auto refElement = Dune::referenceElement<double,dim>(GeometryTypes::simplex(dim));
328
329 for (std::size_t i=0; i<numberOfEdges; i++)
330 m_[i] = refElement.position(i,dim-1);
331
332 for (std::size_t i=0; i<numberOfEdges; i++)
333 {
334 auto vertexIterator = refElement.subEntities(i,dim-1,dim).begin();
335 auto v0 = *vertexIterator;
336 auto v1 = *(++vertexIterator);
337 // By default, edges point from the vertex with the smaller index
338 // to the vertex with the larger index.
339 if (v0>v1)
340 std::swap(v0,v1);
341 edge_[i] = refElement.position(v1,dim) - refElement.position(v0,dim);
342 edge_[i] *= (s[i]) ? -1.0 : 1.0;
343 }
344 }
345
351 template<typename F, typename C>
352 void interpolate (const F& ff, std::vector<C>& out) const
353 {
354 out.resize(size);
355 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
356
357 for (std::size_t i=0; i<size; i++)
358 {
359 auto y = f(m_[i]);
360 out[i] = 0.0;
361 for (int j=0; j<dim; j++)
362 out[i] += y[j]*edge_[i][j];
363 }
364 }
365
366 private:
367 // Edge midpoints of the reference simplex
368 std::array<typename LB::Traits::DomainType, numberOfEdges> m_;
369 // Edges of the reference simplex
370 std::array<typename LB::Traits::DomainType, numberOfEdges> edge_;
371 };
372
373}
374
375
401 template<class D, class R, int dim, int k>
403 {
404 public:
406 Impl::Nedelec1stKindSimplexLocalCoefficients<dim,k>,
407 Impl::Nedelec1stKindSimplexLocalInterpolation<Impl::Nedelec1stKindSimplexLocalBasis<D,R,dim,k> > >;
408
409 static_assert(dim==2 || dim==3, "Nedelec elements are only implemented for 2d and 3d elements.");
410 static_assert(k==1, "Nedelec elements of the first kind are currently only implemented for order k==1.");
411
415
421 Nedelec1stKindSimplexLocalFiniteElement (std::bitset<dim*(dim+1)/2> s) :
422 basis_(s),
423 interpolation_(s)
424 {}
425
426 const typename Traits::LocalBasisType& localBasis () const
427 {
428 return basis_;
429 }
430
431 const typename Traits::LocalCoefficientsType& localCoefficients () const
432 {
433 return coefficients_;
434 }
435
436 const typename Traits::LocalInterpolationType& localInterpolation () const
437 {
438 return interpolation_;
439 }
440
441 static constexpr unsigned int size ()
442 {
443 return Traits::LocalBasisType::size();
444 }
445
446 static constexpr GeometryType type ()
447 {
448 return GeometryTypes::simplex(dim);
449 }
450
451 private:
452 typename Traits::LocalBasisType basis_;
453 typename Traits::LocalCoefficientsType coefficients_;
454 typename Traits::LocalInterpolationType interpolation_;
455 };
456
457}
458
459#endif
Nédélec elements of the first kind for simplex elements.
Definition: nedelec1stkindsimplex.hh:403
Nedelec1stKindSimplexLocalFiniteElement()=default
Default constructor.
Nedelec1stKindSimplexLocalFiniteElement(std::bitset< dim *(dim+1)/2 > s)
Constructor with explicitly given edge orientations.
Definition: nedelec1stkindsimplex.hh:421
GeometryType
Type representing VTK's entity geometry types.
Definition: common.hh:132
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
constexpr GeometryType simplex(unsigned int dim)
Returns a GeometryType representing a simplex of dimension dim.
Definition: type.hh:464
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:291
Dune namespace.
Definition: alignedallocator.hh:13
D DomainType
domain type
Definition: localbasis.hh:42
traits helper struct
Definition: localfiniteelementtraits.hh:13
LB LocalBasisType
Definition: localfiniteelementtraits.hh:16
LC LocalCoefficientsType
Definition: localfiniteelementtraits.hh:20
LI LocalInterpolationType
Definition: localfiniteelementtraits.hh:24
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 21, 23:30, 2024)