5#ifndef DUNE_LOCALFUNCTIONS_LAGRANGE_LAGRANGEPYRAMID_HH
6#define DUNE_LOCALFUNCTIONS_LAGRANGE_LAGRANGEPYRAMID_HH
15#include <dune/geometry/referenceelements.hh>
17#include <dune/localfunctions/common/localbasis.hh>
18#include <dune/localfunctions/common/localfiniteelementtraits.hh>
19#include <dune/localfunctions/common/localinterpolation.hh>
20#include <dune/localfunctions/common/localkey.hh>
22namespace Dune {
namespace Impl
33 template<
class D,
class R,
unsigned int k>
34 class LagrangePyramidLocalBasis
37 using Traits = LocalBasisTraits<D,3,FieldVector<D,3>,R,1,FieldVector<R,1>,FieldMatrix<R,1,3> >;
41 static constexpr std::size_t size ()
43 std::size_t result = 0;
44 for (
unsigned int i=0; i<=k; i++)
45 result +=
power(i+1,2);
51 std::vector<typename Traits::RangeType>& out)
const
66 out[0] = (1-in[0])*(1-in[1])-in[2]*(1-in[1]);
67 out[1] = in[0]*(1-in[1])-in[2]*in[1];
68 out[2] = (1-in[0])*in[1]-in[2]*in[1];
69 out[3] = in[0]*in[1]+in[2]*in[1];
73 out[0] = (1-in[0])*(1-in[1])-in[2]*(1-in[0]);
74 out[1] = in[0]*(1-in[1])-in[2]*in[0];
75 out[2] = (1-in[0])*in[1]-in[2]*in[0];
76 out[3] = in[0]*in[1]+in[2]*in[0];
87 const R x = 2.0*in[0] + in[2] - 1.0;
88 const R y = 2.0*in[1] + in[2] - 1.0;
94 out[0] = 0.25*(x + z)*(x + z - 1)*(y - z - 1)*(y - z);
95 out[1] = -0.25*(x + z)*(y - z)*((x + z + 1)*(-y + z + 1) - 4*z) - z*(x - y);
96 out[2] = 0.25*(x + z)*(y - z)*(y - z + 1)*(x + z - 1);
97 out[3] = 0.25*(y - z)*(x + z)*(y - z + 1)*(x + z + 1);
101 out[5] = -0.5*(y - z + 1)*(x + z - 1)*(y - 1)*x;
102 out[6] = -0.5*(y - z + 1)*(((x + z + 1)*(y - 1)*x - z) + z*(2*y + 1));
103 out[7] = -0.5*(x + z - 1)*(((y - z - 1)*(x + 1)*y - z) + z*(2*x + 1));
104 out[8] = -0.5*(y - z + 1)*(x + z - 1)*(x + 1)*y;
107 out[9] = z*(x + z - 1)*(y - z - 1);
108 out[10] = -z*((x + z + 1)*(y - z - 1) + 4*z);
109 out[11] = -z*(y - z + 1)*(x + z - 1);
110 out[12] = z*(y - z + 1)*(x + z + 1);
113 out[13] = (y - z + 1)*(x + z - 1)*((y - 1)*(x + 1) + z*(x - y + z + 1));
118 out[0] = 0.25*(y + z)*(y + z - 1)*(x - z - 1)*(x - z);
119 out[1] = -0.25*(x - z)*(y + z)*(x - z + 1)*(-y - z + 1);
120 out[2] = 0.25*(x - z)*(y + z)*((x - z - 1)*(y + z + 1) + 4*z) + z*(x - y);
121 out[3] = 0.25*(y + z)*(x - z)*(x - z + 1)*(y + z + 1);
122 out[4] = z*(2*z - 1);
125 out[5] = -0.5*(y + z - 1)*(((x - z - 1)*(y + 1)*x - z) + z*(2*y + 1));
126 out[6] = -0.5*(x - z + 1)*(y + z - 1)*(y + 1)*x;
127 out[7] = -0.5*(x - z + 1)*(y + z - 1)*(x - 1)*y;
128 out[8] = -0.5*(x - z + 1)*(((y + z + 1)*(x - 1)*y - z) + z*(2*x + 1));
131 out[9] = z*(y + z - 1)*(x - z - 1);
132 out[10] = -z*(x - z + 1)*(y + z - 1);
133 out[11] = -z*((y + z + 1)*(x - z - 1) + 4*z);
134 out[12] = z*(x - z + 1)*(y + z + 1);
137 out[13] = (x - z + 1)*(y + z - 1)*((y + 1)*(x - 1) - z*(x - y - z - 1));
143 DUNE_THROW(NotImplemented,
"LagrangePyramidLocalBasis::evaluateFunction for order " << k);
152 std::vector<typename Traits::JacobianType>& out)
const
159 std::fill(out[0][0].begin(), out[0][0].end(), 0);
167 out[0][0] = {-1 + in[1], -1 + in[0] + in[2], -1 + in[1]};
168 out[1][0] = { 1 - in[1], -in[0] - in[2], -in[1]};
169 out[2][0] = { -in[1], 1 - in[0] - in[2], -in[1]};
170 out[3][0] = { in[1], in[0] + in[2], in[1]};
174 out[0][0] = {-1 + in[1] + in[2], -1 + in[0], -1 + in[0]};
175 out[1][0] = { 1 - in[1] - in[2], -in[0], -in[0]};
176 out[2][0] = { -in[1] - in[2], 1 - in[0], -in[0]};
177 out[3][0] = { in[1] + in[2], in[0], in[0]};
180 out[4][0] = {0, 0, 1};
187 const R x = 2.0*in[0] + in[2] - 1.0;
188 const R y = 2.0*in[1] + in[2] - 1.0;
196 out[0][0][0] = 0.5*(y - z - 1)*(y - z)*(2*x + 2*z - 1);
197 out[0][0][1] = 0.5*(x + z)*(x + z - 1)*(2*y - 2*z - 1);
198 out[0][0][2] = 0.5*(out[0][0][0] + out[0][0][1])
199 + 0.25*((2*x + 2*z - 1)*(y - z - 1)*(y - z)
200 + (x + z)*(x + z - 1)*(-2*y + 2*z + 1));
202 out[1][0][0] = 2*(-0.25*((y - z)*((x + z + 1)*(-y + z + 1) - 4*z)
203 + (x + z)*(y - z)*(-y + z + 1)) - z);
204 out[1][0][1] = 2*(-0.25*((x + z)*((x + z + 1)*(-y + z + 1) - 4*z)
205 + (x + z)*(y - z)*(-(x + z + 1))) + z);
206 out[1][0][2] = 0.5*(out[1][0][0] + out[1][0][1])
207 - 0.25*((y - z)*((x + z + 1)*(-y + z + 1) - 4*z)
208 - (x + z)*((x + z + 1)*(-y + z + 1) - 4*z)
209 + (x + z)*(y - z)*(x - y + 2*z - 2))
212 out[2][0][0] = 0.5*(y - z)*(y - z + 1)*(2*x + 2*z - 1);
213 out[2][0][1] = 0.5*(x + z)*(2*y - 2*z + 1)*(x + z - 1);
214 out[2][0][2] = 0.5*(out[2][0][0] + out[2][0][1])
215 + 0.25*((y - x - 2*z)*(y - z + 1)*(x + z - 1)
216 + (x + z)*(y - z)*(y - x - 2*z + 2));
218 out[3][0][0] = 0.5*(y - z)*(2*x + 2*z + 1)*(y - z + 1);
219 out[3][0][1] = 0.5*(2*y - 2*z + 1)*(x + z)*(x + z + 1);
220 out[3][0][2] = 0.5*(out[3][0][0] + out[3][0][1])
221 + 0.25*((y - x - 2*z)*(y - z + 1)*(x + z + 1)
222 + (y - z)*(x + z)*(y - x - 2*z));
226 out[4][0][2] = 4*z - 1;
229 out[5][0][0] = -(y - z + 1)*(y - 1)*(2*x + z - 1);
230 out[5][0][1] = -(x + z - 1)*(y - 1)*x - (y - z + 1)*(x + z - 1)*x;
231 out[5][0][2] = 0.5*(out[5][0][0] + out[5][0][1])
232 + 0.5*(x + z - 1)*(y - 1)*x - 0.5*(y - z + 1)*(y - 1)*x;
234 out[6][0][0] = -(y - z + 1)*(2*x + z + 1)*(y - 1);
235 out[6][0][1] = -(((x + z + 1)*(y - 1)*x - z) + z*(2*y + 1)
236 + (y - z + 1)*((x + z + 1)*x + 2*z));
237 out[6][0][2] = 0.5*(out[6][0][0] + out[6][0][1])
238 - 0.5*(-(((x + z + 1)*(y - 1)*x - z) + z*(2*y + 1))
239 + (y - z + 1)*(((y - 1)*x - 1) + 2*y + 1));
241 out[7][0][0] = -(((y - z - 1)*(x + 1)*y - z) + z*(2*x + 1)
242 + (x + z - 1)*((y - z - 1)*y + 2*z));
243 out[7][0][1] = -(x + z - 1)*(2*y - z - 1)*(x + 1);
244 out[7][0][2] = 0.5*(out[7][0][0] + out[7][0][1])
245 - 0.5*(((y - z - 1)*(x + 1)*y - z) + z*(2*x + 1)
246 + (x + z - 1)*((-(x + 1)*y - 1) + 2*x + 1));
248 out[8][0][0] = -(y - z + 1)*(2*x + z)*y;
249 out[8][0][1] = -(2*y - z + 1)*(x + z - 1)*(x + 1);
250 out[8][0][2] = 0.5*(out[8][0][0] + out[8][0][1])
251 - 0.5*(-x + y - 2*z + 2)*(x + 1)*y;
254 out[9][0][0] = 2*z*(y - z - 1);
255 out[9][0][1] = 2*z*(x + z - 1);
256 out[9][0][2] = 0.5*(out[9][0][0] + out[9][0][1])
257 + (x + z - 1)*(y - z - 1) + z*(-x + y - 2*z);
259 out[10][0][0] = -2*z*(y - z - 1);
260 out[10][0][1] = -2*z*(x + z + 1);
261 out[10][0][2] = 0.5*(out[10][0][0] + out[10][0][1])
262 - ((x + z + 1)*(y - z - 1) + 4*z)
263 - z*(-x + y - 2*z + 2);
265 out[11][0][0] = -2*z*(y - z + 1);
266 out[11][0][1] = -2*z*(x + z - 1);
267 out[11][0][2] = 0.5*(out[11][0][0] + out[11][0][1])
268 - (y - z + 1)*(x + z - 1) - z*(-x + y - 2*z + 2);
270 out[12][0][0] = 2*z*(y - z + 1);
271 out[12][0][1] = 2*z*(x + z + 1);
272 out[12][0][2] = 0.5*(out[12][0][0] + out[12][0][1])
273 + (y - z + 1)*(x + z + 1) + z*(-x + y - 2*z);
276 out[13][0][0] = 2*((y - z + 1)*((y - 1)*(x + 1) + z*(x - y + z + 1))
277 + (y - z + 1)*(x + z - 1)*(y - 1 + z));
278 out[13][0][1] = 2*((x + z - 1)*((y - 1)*(x + 1) + z*(x - y + z + 1))
279 + (y - z + 1)*(x + z - 1)*(x + 1 - z));
280 out[13][0][2] = 0.5*(out[13][0][0] + out[13][0][1])
281 + ((-x + y - 2*z + 2)*((y - 1)*(x + 1) + z*(x - y + z + 1))
282 + (y - z + 1)*(x + z - 1)*(x - y + 2*z + 1));
287 out[0][0][0] = 0.5*(y + z)*(y + z - 1)*(2*x - 2*z - 1);
288 out[0][0][1] = 0.5*(2*y + 2*z - 1)*(x - z - 1)*(x - z);
289 out[0][0][2] = 0.5*(out[0][0][0] + out[0][0][1])
290 + 0.25*((2*y + 2*z - 1)*(x - z - 1)*(x - z)
291 + (y + z)*(y + z - 1)*(-2*x + 2*z + 1));
293 out[1][0][0] = -0.5*(y + z)*(2*x - 2*z + 1)*(-y - z + 1);
294 out[1][0][1] = -0.5*(x - z)*(x - z + 1)*(-2*y - 2*z + 1);
295 out[1][0][2] = 0.5*(out[1][0][0] + out[1][0][1])
296 - 0.25*((x - y - 2*z)*(x - z + 1)*(-y - z + 1)
297 + (x - z)*(y + z)*(-x + y + 2*z - 2));
299 out[2][0][0] = 0.5*((y + z)*((x - z - 1)*(y + z + 1) + 4*z)
300 + (x - z)*(y + z)*(y + z + 1) + 4*z);
301 out[2][0][1] = 0.5*((x - z)*((x - z - 1)*(y + z + 1) + 4*z)
302 + (x - z)*(y + z)*(x - z - 1) - 4*z);
303 out[2][0][2] = 0.5*(out[2][0][0] + out[2][0][1])
304 + 0.25*((x - y - 2*z)*((x - z - 1)*(y + z + 1) + 4*z)
305 + (x - z)*(y + z)*(x - y - 2*z + 2) + 4*(x - y));
307 out[3][0][0] = 0.5*(y + z)*(2*x - 2*z + 1)*(y + z + 1);
308 out[3][0][1] = 0.5*(x - z)*(x - z + 1)*(2*y + 2*z + 1);
309 out[3][0][2] = 0.5*(out[3][0][0] + out[3][0][1])
310 + 0.25*((x - y - 2*z)*(x - z + 1)*(y + z + 1)
311 + (y + z)*(x - z)*(x - y - 2*z));
315 out[4][0][2] = 4*z - 1;
318 out[5][0][0] = -(y + z - 1)*(2*x - z - 1)*(y + 1);
319 out[5][0][1] = -(((x - z - 1)*(y + 1)*x - z) + z*(2*y + 1)
320 + (y + z - 1)*((x - z - 1)*x + 2*z));
321 out[5][0][2] = 0.5*(out[5][0][0] + out[5][0][1])
322 - 0.5*((((x - z - 1)*(y + 1)*x - z) + z*(2*y + 1))
323 + (y + z - 1)*((-(y + 1)*x - 1) + 2*y + 1));
325 out[6][0][0] = -(2*x - z + 1)*(y + z - 1)*(y + 1);
326 out[6][0][1] = -(x - z + 1)*(2*y + z)*x;
327 out[6][0][2] = 0.5*(out[6][0][0] + out[6][0][1])
328 - 0.5*(x - y - 2*z + 2)*(y + 1)*x;
330 out[7][0][0] = -(2*x - z)*(y + z - 1)*y;
331 out[7][0][1] = -(x - z + 1)*(2*y + z - 1)*(x - 1);
332 out[7][0][2] = 0.5*(out[7][0][0] + out[7][0][1])
333 - 0.5*(x - y - 2*z + 2)*(x - 1)*y;
335 out[8][0][0] = -(((y + z + 1)*(x - 1)*y - z) + z*(2*x + 1)
336 + (x - z + 1)*((y + z + 1)*y + 2*z));
337 out[8][0][1] = -(x - z + 1)*(2*y + z + 1)*(x - 1);
338 out[8][0][2] = 0.5*(out[8][0][0] + out[8][0][1])
339 - 0.5*(-(((y + z + 1)*(x - 1)*y - z) + z*(2*x + 1))
340 + (x - z + 1)*(((x - 1)*y - 1) + 2*x + 1));
343 out[9][0][0] = 2*z*(y + z - 1);
344 out[9][0][1] = 2*z*(x - z - 1);
345 out[9][0][2] = 0.5*(out[9][0][0] + out[9][0][1])
346 + (y + z - 1)*(x - z - 1) + z*(x - y - 2*z);
348 out[10][0][0] = -2*z*(y + z - 1);
349 out[10][0][1] = -2*z*(x - z + 1);
350 out[10][0][2] = 0.5*(out[10][0][0] + out[10][0][1])
351 - (x - z + 1)*(y + z - 1) - z*(x - y - 2*z + 2);
353 out[11][0][0] = -2*z*(y + z + 1);
354 out[11][0][1] = -2*z*(x - z - 1);
355 out[11][0][2] = 0.5*(out[11][0][0] + out[11][0][1])
356 - ((y + z + 1)*(x - z - 1) + 4*z) - z*(x - y - 2*z + 2);
358 out[12][0][0] = 2*z*(y + z + 1);
359 out[12][0][1] = 2*z*(x - z + 1);
360 out[12][0][2] = 0.5*(out[12][0][0] + out[12][0][1])
361 + (x - z + 1)*(y + z + 1) + z*(x - y - 2*z);
364 out[13][0][0] = 2*((y + z - 1)*((y + 1)*(x - 1) - z*(x - y - z - 1))
365 + (x - z + 1)*(y + z - 1)*(y + 1 - z));
366 out[13][0][1] = 2*((x - z + 1)*((y + 1)*(x - 1) - z*(x - y - z - 1))
367 + (x - z + 1)*(y + z - 1)*(x - 1 + z));
368 out[13][0][2] = 0.5*(out[13][0][0] + out[13][0][1])
369 + (x - y - 2*z + 2)*((y + 1)*(x - 1) - z*(x - y - z - 1))
370 + (x - z + 1)*(y + z - 1)*(-(x - y - 2*z - 1));
376 DUNE_THROW(NotImplemented,
"LagrangePyramidLocalBasis::evaluateJacobian for order " << k);
385 void partial(
const std::array<unsigned int,3>& order,
387 std::vector<typename Traits::RangeType>& out)
const
395 evaluateFunction(in, out);
409 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
422 out[0] = -1 + in[0] + in[2];
423 out[1] = -in[0] - in[2];
424 out[2] = 1 - in[0] - in[2];
425 out[3] = in[0]+in[2];
436 DUNE_THROW(RangeError,
"Component out of range.");
444 out[0] = -1 + in[1] + in[2];
445 out[1] = 1 - in[1] - in[2];
446 out[2] = -in[1] - in[2];
447 out[3] = in[1] + in[2];
465 DUNE_THROW(RangeError,
"Component out of range.");
468 }
else if (totalOrder == 2)
470 if ((order[0] == 1 && order[1] == 1) ||
471 (order[1] == 1 && order[2] == 1 && in[0] > in[1]) ||
472 (order[0] == 1 && order[2] == 1 && in[0] <=in[1]))
474 out = {1, -1, -1, 1, 0};
477 out = {0, 0, 0, 0, 0};
482 out = {0, 0, 0, 0, 0};
493 const R x = 2.0*in[0] + in[2] - 1.0;
494 const R y = 2.0*in[1] + in[2] - 1.0;
497 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
506 out[0] = 0.5*(y - z - 1)*(y - z)*(2*x + 2*z - 1);
507 out[1] = 2*(-0.25*((y - z)*((x + z + 1)*(-y + z + 1) - 4*z) + (x + z)*(y - z)*(-y + z + 1)) - z);
508 out[2] = 0.5*(y - z)*(y - z + 1)*(2*x + 2*z - 1);
509 out[3] = 0.5*(y - z)*(2*x + 2*z + 1)*(y - z + 1);
511 out[5] = -(y - z + 1)*(2*x + z - 1)*(y - 1);
512 out[6] = -(y - z + 1)*(2*x + z + 1)*(y - 1);
513 out[7] = -(((y - z - 1)*(x + 1)*y - z) + z*(2*x + 1) + (x + z - 1)*((y - z - 1)*y + 2*z));
514 out[8] = -(y - z + 1)*(2*x + z)*y;
515 out[9] = 2*z*(y - z - 1);
516 out[10] = -2*z*(y - z - 1);
517 out[11] = -2*z*(y - z + 1);
518 out[12] = 2*z*(y - z + 1);
519 out[13] = 2*((y - z + 1)*((y - 1)*(x + 1) + z*(x - y + z + 1)) + (y - z + 1)*(x + z - 1)*(y - 1 + z));
522 out[0] = 0.5*(x + z)*(x + z - 1)*(2*y - 2*z - 1);
523 out[1] = 2*(-0.25*((x + z)*((x + z + 1)*(-y + z + 1) - 4*z) + (x + z)*(y - z)*(-(x + z + 1))) + z);
524 out[2] = 0.5*(x + z)*(2*y - 2*z + 1)*(x + z - 1);
525 out[3] = 0.5*(2*y - 2*z + 1)*(x + z)*(x + z + 1);
527 out[5] = -(x + z - 1)*(y - 1)*x - (y - z + 1)*(x + z - 1)*x;
528 out[6] = -(((x + z + 1)*(y - 1)*x - z) + z*(2*y + 1) + (y - z + 1)*((x + z + 1)*x + 2*z));
529 out[7] = -(x + z - 1)*(2*y - z - 1)*(x + 1);
530 out[8] = -(2*y - z + 1)*(x + z - 1)*(x + 1);
531 out[9] = 2*z*(x + z - 1);
532 out[10] = -2*z*(x + z + 1);
533 out[11] = -2*z*(x + z - 1);
534 out[12] = 2*z*(x + z + 1);
535 out[13] = 2*((x + z - 1)*((y - 1)*(x + 1) + z*(x - y + z + 1)) + (y - z + 1)*(x + z - 1)*(x + 1 - z));
538 out[0] = -((y - z)*(2*x + 2*z - 1)*(z - y + 1))/2;
539 out[1] = ((y - z + 1)*(y - 2*x + z + 2*x*y - 2*x*z + 2*y*z - 2*z*z))/2;
540 out[2] = ((y - z)*(2*x + 2*z - 1)*(y - z + 1))/2;
541 out[3] = ((y - z)*(2*x + 2*z + 1)*(y - z + 1))/2;
543 out[5] = (-(y - z + 1)*(2*x + z - 1)*(y - 1) - (x + z - 1)*(y - 1)*x - (y - z + 1)*(x + z - 1)*x + (x + z - 1)*(y - 1)*x - (y - z + 1)*(y - 1)*x)/2;
544 out[6] = -((y - z + 1)*(3*y - 2*x + z + 3*x*y + x*z + y*z + x*x - 1))/2;
545 out[7] = z - z*(2*x + 1) - ((2*z - y*(z - y + 1))*(x + z - 1))/2 - ((2*x - y*(x + 1))*(x + z - 1))/2 + ((x + 1)*(x + z - 1)*(z - 2*y + 1))/2 + y*(x + 1)*(z - y + 1);
546 out[8] = -((y - z + 1)*(y + z + 3*x*y + x*z + y*z + x*x - 1))/2;
547 out[9] = -(x + 3*z - 1)*(z - y + 1);
548 out[10] = (x + z + 1)*(z - y + 1) - 2*y*z - 6*z + 2*z*z;
549 out[11] = -(x + 3*z - 1)*(y - z + 1);
550 out[12] = (x + 3*z + 1)*(y - z + 1);
551 out[13] = (y - z + 1)*(2*y - 3*x + z + 2*x*y + 6*x*z - 2*y*z + 2*x*x + 4*z*z - 3);
554 DUNE_THROW(RangeError,
"Component out of range.");
562 out[0] = -((y + z)*(2*z - 2*x + 1)*(y + z - 1))/2;
563 out[1] = ((y + z)*(2*x - 2*z + 1)*(y + z - 1))/2;
564 out[2] = -((y + z + 1)*(y - 3*z - 2*x*y - 2*x*z + 2*y*z + 2*z*z))/2;
565 out[3] = ((y + z)*(2*x - 2*z + 1)*(y + z + 1))/2;
567 out[5] = (y + 1)*(y + z - 1)*(z - 2*x + 1);
568 out[6] = -(y + 1)*(2*x - z + 1)*(y + z - 1);
569 out[7] = -y*(2*x - z)*(y + z - 1);
570 out[8] = z - z*(2*x + 1) - (2*z + y*(y + z + 1))*(x - z + 1) - y*(x - 1)*(y + z + 1);
571 out[9] = 2*z*(y + z - 1);
572 out[10] = -2*z*(y + z - 1);
573 out[11] = -2*z*(y + z + 1);
574 out[12] = 2*z*(y + z + 1);
575 out[13] = 2*(y + z - 1)*(2*x - z + 2*x*y - 2*x*z + 2*z*z);
578 out[0] = -(x - z)*(y + z - 0.5)*(z - x + 1);
579 out[1] = ((x - z)*(2*y + 2*z - 1)*(x - z + 1))/2;
580 out[2] = -((z - x + 1)*(x + 3*z + 2*x*y + 2*x*z - 2*y*z - 2*z*z))/2;
581 out[3] = ((x - z)*(2*y + 2*z + 1)*(x - z + 1))/2;
583 out[5] = z - z*(2*y + 1) - (2*z - x*(z - x + 1))*(y + z - 1) + x*(y + 1)*(z - x + 1);
584 out[6] = -x*(2*y + z)*(x - z + 1);
585 out[7] = -(x - 1)*(x - z + 1)*(2*y + z - 1);
586 out[8] = -(x - 1)*(x - z + 1)*(2*y + z + 1);
587 out[9] = -2*z*(z - x + 1);
588 out[10] = -2*z*(x - z + 1);
589 out[11] = 2*z*(z - x + 1);
590 out[12] = 2*z*(x - z + 1);
591 out[13] = 2*(x - z + 1)*(2*x*y - z - 2*y + 2*y*z + 2*z*z);
594 out[0] = -((x - z)*(2*y + 2*z - 1)*(z - x + 1))/2;
595 out[1] = ((x - z)*(2*y + 2*z - 1)*(x - z + 1))/2;
596 out[2] = ((x - z + 1)*(x - 2*y + z + 2*x*y + 2*x*z - 2*y*z - 2*z*z))/2;
597 out[3] = ((x - z)*(2*y + 2*z + 1)*(x - z + 1))/2;
599 out[5] = z - z*(2*y + 1) - ((2*z - x*(z - x + 1))*(y + z - 1))/2 - ((2*y - x*(y + 1))*(y + z - 1))/2 + ((y + 1)*(y + z - 1)*(z - 2*x + 1))/2 + x*(y + 1)*(z - x + 1);
600 out[6] = -((x - z + 1)*(x + z + 3*x*y + x*z + y*z + y*y - 1))/2;
601 out[7] = -((x - z + 1)*(3*x*y - 4*y - z - x + x*z + y*z + y*y + 1))/2;
602 out[8] = -((x - z + 1)*(3*x - 2*y + z + 3*x*y + x*z + y*z + y*y - 1))/2;
603 out[9] = -(z - x + 1)*(y + 3*z - 1);
604 out[10] = -(x - z + 1)*(y + 3*z - 1);
605 out[11] = (y + z + 1)*(z - x + 1) - 2*x*z - 6*z + 2*z*z;
606 out[12] = (x - z + 1)*(y + 3*z + 1);
607 out[13] = (x - z + 1)*(2*x - 3*y + z + 2*x*y - 2*x*z + 6*y*z + 2*y*y + 4*z*z - 3);
610 DUNE_THROW(RangeError,
"Component out of range.");
614 DUNE_THROW(NotImplemented,
"Desired derivative order is not implemented");
620 DUNE_THROW(NotImplemented,
"LagrangePyramidLocalBasis::partial for order " << k);
624 static constexpr unsigned int order ()
634 template<
unsigned int k>
635 class LagrangePyramidLocalCoefficients
639 LagrangePyramidLocalCoefficients ()
644 localKeys_[0] = LocalKey(0,0,0);
650 for (std::size_t i=0; i<size(); i++)
651 localKeys_[i] = LocalKey(i,3,0);
658 localKeys_[0] = LocalKey(0,3,0);
659 localKeys_[1] = LocalKey(1,3,0);
660 localKeys_[2] = LocalKey(2,3,0);
661 localKeys_[3] = LocalKey(3,3,0);
662 localKeys_[4] = LocalKey(4,3,0);
665 localKeys_[5] = LocalKey(0,2,0);
666 localKeys_[6] = LocalKey(1,2,0);
667 localKeys_[7] = LocalKey(2,2,0);
668 localKeys_[8] = LocalKey(3,2,0);
669 localKeys_[9] = LocalKey(4,2,0);
670 localKeys_[10] = LocalKey(5,2,0);
671 localKeys_[11] = LocalKey(6,2,0);
672 localKeys_[12] = LocalKey(7,2,0);
675 localKeys_[13] = LocalKey(0,1,0);
681 DUNE_THROW(NotImplemented,
"LagrangePyramidLocalCoefficients for order " << k);
686 static constexpr std::size_t size ()
688 std::size_t result = 0;
689 for (
unsigned int i=0; i<=k; i++)
690 result +=
power(i+1,2);
695 const LocalKey& localKey (std::size_t i)
const
697 return localKeys_[i];
701 std::vector<LocalKey> localKeys_;
708 template<
class LocalBasis>
709 class LagrangePyramidLocalInterpolation
720 template<
typename F,
typename C>
721 void interpolate (
const F& ff, std::vector<C>& out)
const
723 constexpr auto k = LocalBasis::order();
724 using D =
typename LocalBasis::Traits::DomainType;
725 using DF =
typename LocalBasis::Traits::DomainFieldType;
727 auto&& f = Impl::makeFunctionWithCallOperator<D>(ff);
729 out.resize(LocalBasis::size());
742 for (
unsigned int i=0; i<LocalBasis::size(); i++)
753 out[0] = f( D( {0.0, 0.0, 0.0} ) );
754 out[1] = f( D( {1.0, 0.0, 0.0} ) );
755 out[2] = f( D( {0.0, 1.0, 0.0} ) );
756 out[3] = f( D( {1.0, 1.0, 0.0} ) );
757 out[4] = f( D( {0.0, 0.0, 1.0} ) );
758 out[5] = f( D( {0.0, 0.5, 0.0} ) );
759 out[6] = f( D( {1.0, 0.5, 0.0} ) );
760 out[7] = f( D( {0.5, 0.0, 0.0} ) );
761 out[8] = f( D( {0.5, 1.0, 0.0} ) );
762 out[9] = f( D( {0.0, 0.0, 0.5} ) );
763 out[10] = f( D( {0.5, 0.0, 0.5} ) );
764 out[11] = f( D( {0.0, 0.5, 0.5} ) );
765 out[12] = f( D( {0.5, 0.5, 0.5} ) );
766 out[13] = f( D( {0.5, 0.5, 0.0} ) );
771 DUNE_THROW(NotImplemented,
"LagrangePyramidLocalInterpolation not implemented for order " << k);
810 template<
class D,
class R,
int k>
817 Impl::LagrangePyramidLocalCoefficients<k>,
818 Impl::LagrangePyramidLocalInterpolation<Impl::LagrangePyramidLocalBasis<D,R,k> > >;
838 return coefficients_;
845 return interpolation_;
849 static constexpr std::size_t
size ()
851 return Impl::LagrangePyramidLocalBasis<D,R,k>::size();
862 Impl::LagrangePyramidLocalBasis<D,R,k> basis_;
863 Impl::LagrangePyramidLocalCoefficients<k> coefficients_;
864 Impl::LagrangePyramidLocalInterpolation<Impl::LagrangePyramidLocalBasis<D,R,k> > interpolation_;
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:126
Lagrange finite element for 3d pyramids with compile-time polynomial order.
Definition: lagrangepyramid.hh:812
const Traits::LocalCoefficientsType & localCoefficients() const
Returns the assignment of the degrees of freedom to the element subentities.
Definition: lagrangepyramid.hh:836
static constexpr std::size_t size()
The number of shape functions.
Definition: lagrangepyramid.hh:849
LagrangePyramidLocalFiniteElement()
Default constructor.
Definition: lagrangepyramid.hh:825
static constexpr GeometryType type()
The reference element that the local finite element is defined on.
Definition: lagrangepyramid.hh:856
const Traits::LocalBasisType & localBasis() const
Returns the local basis, i.e., the set of shape functions.
Definition: lagrangepyramid.hh:829
const Traits::LocalInterpolationType & localInterpolation() const
Returns object that evaluates degrees of freedom.
Definition: lagrangepyramid.hh:843
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:218
constexpr GeometryType pyramid
GeometryType representing a 3D pyramid.
Definition: type.hh:537
constexpr GeometryType vertex
GeometryType representing a vertex.
Definition: type.hh:507
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:291
Some useful basic math stuff.
Dune namespace.
Definition: alignedallocator.hh:13
constexpr Base power(Base m, Exponent p)
Power method for integer exponents.
Definition: math.hh:75
static const ReferenceElement & general(const GeometryType &type)
get general reference elements
Definition: referenceelements.hh:198
D DomainType
domain type
Definition: localbasis.hh:42
traits helper struct
Definition: localfiniteelementtraits.hh:13
LB LocalBasisType
Definition: localfiniteelementtraits.hh:16
LC LocalCoefficientsType
Definition: localfiniteelementtraits.hh:20
LI LocalInterpolationType
Definition: localfiniteelementtraits.hh:24