Dune Core Modules (2.9.1)

hierarchicalsimplexp2withelementbubble.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_HIERARCHICAL_SIMPLEX_P2_WITH_ELEMENT_BUBBLE_LOCALBASIS_HH
6#define DUNE_HIERARCHICAL_SIMPLEX_P2_WITH_ELEMENT_BUBBLE_LOCALBASIS_HH
7
12#include <numeric>
13#include <vector>
14
17
18#include <dune/localfunctions/common/localbasis.hh>
19#include <dune/localfunctions/common/localkey.hh>
20#include <dune/localfunctions/common/localinterpolation.hh>
21
22namespace Dune
23{
24 template<class D, class R, int dim>
25 class HierarchicalSimplexP2WithElementBubbleLocalBasis
26 {
27 public:
28 HierarchicalSimplexP2WithElementBubbleLocalBasis()
29 {
30 DUNE_THROW(Dune::NotImplemented,"HierarchicalSimplexP2LocalBasis not implemented for dim > 3.");
31 }
32 };
33
48 template<class D, class R>
49 class HierarchicalSimplexP2WithElementBubbleLocalBasis<D,R,1>
50 {
51 public:
55
57 unsigned int size () const
58 {
59 return 3;
60 }
61
63 inline void evaluateFunction (const typename Traits::DomainType& in,
64 std::vector<typename Traits::RangeType>& out) const
65 {
66 out.resize(3);
67
68 out[0] = 1-in[0];
69 out[1] = in[0];
70 out[2] = 1-4*(in[0]-0.5)*(in[0]-0.5);
71 }
72
74 inline void
75 evaluateJacobian (const typename Traits::DomainType& in, // position
76 std::vector<typename Traits::JacobianType>& out) const // return value
77 {
78 out.resize(3);
79
80 out[0][0][0] = -1;
81 out[1][0][0] = 1;
82 out[2][0][0] = 4-8*in[0];
83 }
84
86 void partial (const std::array<unsigned int, 1>& order,
87 const typename Traits::DomainType& in, // position
88 std::vector<typename Traits::RangeType>& out) const // return value
89 {
90 auto totalOrder = order[0];
91 if (totalOrder == 0) {
92 evaluateFunction(in, out);
93 } else if (totalOrder == 1) {
94 out.resize(size());
95 out[0] = -1;
96 out[1] = 1;
97 out[2] = 4-8*in[0];
98 } else if (totalOrder == 2) {
99 out.resize(size());
100 out[0] = 0;
101 out[1] = 0;
102 out[2] =-8;
103 } else {
104 out.resize(size());
105 out[0] = out[1] = out[2] = 0;
106 }
107 }
108
111 unsigned int order () const
112 {
113 return 2;
114 }
115
116 };
117
138 template<class D, class R>
139 class HierarchicalSimplexP2WithElementBubbleLocalBasis<D,R,2>
140 {
141 public:
145
147 unsigned int size () const
148 {
149 return 7;
150 }
151
153 inline void evaluateFunction (const typename Traits::DomainType& in,
154 std::vector<typename Traits::RangeType>& out) const
155 {
156 out.resize(7);
157
158 out[0] = 1 - in[0] - in[1];
159 out[1] = 4*in[0]*(1-in[0]-in[1]);
160 out[2] = in[0];
161 out[3] = 4*in[1]*(1-in[0]-in[1]);
162 out[4] = 4*in[0]*in[1];
163 out[5] = in[1];
164 out[6] = 27*in[0]*in[1]*(1-in[0]-in[1]);
165
166 }
167
169 inline void
170 evaluateJacobian (const typename Traits::DomainType& in, // position
171 std::vector<typename Traits::JacobianType>& out) const // return value
172 {
173 out.resize(7);
174
175 out[0][0][0] = -1; out[0][0][1] = -1;
176 out[1][0][0] = 4-8*in[0]-4*in[1]; out[1][0][1] = -4*in[0];
177 out[2][0][0] = 1; out[2][0][1] = 0;
178 out[3][0][0] = -4*in[1]; out[3][0][1] = 4-4*in[0]-8*in[1];
179 out[4][0][0] = 4*in[1]; out[4][0][1] = 4*in[0];
180 out[5][0][0] = 0; out[5][0][1] = 1;
181
182 // Cubic bubble
183 out[6][0][0] = 27 * in[1] * (1 - 2*in[0] - in[1]);
184 out[6][0][1] = 27 * in[0] * (1 - 2*in[1] - in[0]);
185
186 }
187
189 void partial (const std::array<unsigned int, 2>& order,
190 const typename Traits::DomainType& in, // position
191 std::vector<typename Traits::RangeType>& out) const // return value
192 {
193 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
194 if (totalOrder == 0) {
195 evaluateFunction(in, out);
196 } else if (totalOrder == 1) {
197 out.resize(size());
198 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
199
200 switch (direction) {
201 case 0:
202 out[0] = -1;
203 out[1] = 4-8*in[0]-4*in[1];
204 out[2] = 1;
205 out[3] = -4*in[1];
206 out[4] = 4*in[1];
207 out[5] = 0;
208 out[6] = 27 * in[1] * (1 - 2*in[0] - in[1]);
209 break;
210 case 1:
211 out[0] = -1;
212 out[1] = -4*in[0];
213 out[2] = 0;
214 out[3] = 4-4*in[0]-8*in[1];
215 out[4] = 4*in[0];
216 out[5] = 1;
217 out[6] = 27 * in[0] * (1 - 2*in[1] - in[0]);
218 break;
219 default:
220 DUNE_THROW(RangeError, "Component out of range.");
221 }
222 } else {
223 DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");
224 }
225 }
226
229 unsigned int order () const
230 {
231 return 3;
232 }
233
234 };
235
260 template<class D, class R>
261 class HierarchicalSimplexP2WithElementBubbleLocalBasis<D,R,3>
262 {
263 public:
267
269 unsigned int size () const
270 {
271 return 11;
272 }
273
275 void evaluateFunction (const typename Traits::DomainType& in,
276 std::vector<typename Traits::RangeType>& out) const
277 {
278 out.resize(10);
279
280 out[0] = 1 - in[0] - in[1] - in[2];
281 out[1] = 4 * in[0] * (1 - in[0] - in[1] - in[2]);
282 out[2] = in[0];
283 out[3] = 4 * in[1] * (1 - in[0] - in[1] - in[2]);
284 out[4] = 4 * in[0] * in[1];
285 out[5] = in[1];
286 out[6] = 4 * in[2] * (1 - in[0] - in[1] - in[2]);
287 out[7] = 4 * in[0] * in[2];
288 out[8] = 4 * in[1] * in[2];
289 out[9] = in[2];
290
291 // quartic element bubble
292 out[10] = 81*in[0]*in[1]*in[2]*(1-in[0]-in[1]-in[2]);
293 }
294
296 void evaluateJacobian (const typename Traits::DomainType& in, // position
297 std::vector<typename Traits::JacobianType>& out) const // return value
298 {
299 out.resize(10);
300
301 out[0][0][0] = -1; out[0][0][1] = -1; out[0][0][2] = -1;
302 out[1][0][0] = 4-8*in[0]-4*in[1]-4*in[2]; out[1][0][1] = -4*in[0]; out[1][0][2] = -4*in[0];
303 out[2][0][0] = 1; out[2][0][1] = 0; out[2][0][2] = 0;
304 out[3][0][0] = -4*in[1]; out[3][0][1] = 4-4*in[0]-8*in[1]-4*in[2]; out[3][0][2] = -4*in[1];
305 out[4][0][0] = 4*in[1]; out[4][0][1] = 4*in[0]; out[4][0][2] = 0;
306 out[5][0][0] = 0; out[5][0][1] = 1; out[5][0][2] = 0;
307 out[6][0][0] = -4*in[2]; out[6][0][1] = -4*in[2]; out[6][0][2] = 4-4*in[0]-4*in[1]-8*in[2];
308 out[7][0][0] = 4*in[2]; out[7][0][1] = 0; out[7][0][2] = 4*in[0];
309 out[8][0][0] = 0; out[8][0][1] = 4*in[2]; out[8][0][2] = 4*in[1];
310 out[9][0][0] = 0; out[9][0][1] = 0; out[9][0][2] = 1;
311
312 out[10][0][0] = 81 * in[1] * in[2] * (1 - 2*in[0] - in[1] - in[2]);
313 out[10][0][1] = 81 * in[0] * in[2] * (1 - in[0] - 2*in[1] - in[2]);
314 out[10][0][2] = 81 * in[0] * in[1] * (1 - in[0] - in[1] - 2*in[2]);
315 }
316
318 void partial (const std::array<unsigned int, 3>& order,
319 const typename Traits::DomainType& in, // position
320 std::vector<typename Traits::RangeType>& out) const // return value
321 {
322 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
323 if (totalOrder == 0) {
324 evaluateFunction(in, out);
325 } else if (totalOrder == 1) {
326 out.resize(size());
327 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
328
329 switch (direction) {
330 case 0:
331 out[0] = -1;
332 out[1] = 4-8*in[0]-4*in[1]-4*in[2];
333 out[2] = 1;
334 out[3] = -4*in[1];
335 out[4] = 4*in[1];
336 out[5] = 0;
337 out[6] = -4*in[2];
338 out[7] = 4*in[2];
339 out[8] = 0;
340 out[9] = 0;
341 out[10] = 81 * in[1] * in[2] * (1 - 2*in[0] - in[1] - in[2]);
342 break;
343 case 1:
344 out[0] = -1;
345 out[1] = -4*in[0];
346 out[2] = 0;
347 out[3] = 4-4*in[0]-8*in[1]-4*in[2];
348 out[4] = 4*in[0];
349 out[5] = 1;
350 out[6] = -4*in[2];
351 out[7] = 0;
352 out[8] = 4*in[2];
353 out[9] = 0;
354 out[10] = 81 * in[0] * in[2] * (1 - in[0] - 2*in[1] - in[2]);
355 break;
356 case 2:
357 out[0] = -1;
358 out[1] = -4*in[0];
359 out[2] = 0;
360 out[3] = -4*in[1];
361 out[4] = 0;
362 out[5] = 0;
363 out[6] = 4-4*in[0]-4*in[1]-8*in[2];
364 out[7] = 4*in[0];
365 out[8] = 4*in[1];
366 out[9] = 1;
367 out[10] = 81 * in[0] * in[1] * (1 - in[0] - in[1] - 2*in[2]);
368 break;
369 default:
370 DUNE_THROW(RangeError, "Component out of range.");
371 }
372 } else {
373 DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");
374 }
375 }
376
379 unsigned int order () const
380 {
381 return 4;
382 }
383
384 };
385
386
412 template <int dim>
414 {
415 // The binomial coefficient: dim+1 over 1
416 static const int numVertices = dim+1;
417
418 // The binomial coefficient: dim+1 over 2
419 static const int numEdges = (dim+1)*dim / 2;
420
421 public:
424 : li(numVertices+numEdges + 1)
425 {
426 if (dim!=2)
427 DUNE_THROW(NotImplemented, "only for 2d");
428
429 li[0] = Dune::LocalKey(0,2,0); // Vertex (0,0)
430 li[1] = Dune::LocalKey(0,1,0); // Edge (0.5, 0)
431 li[2] = Dune::LocalKey(1,2,0); // Vertex (1,0)
432 li[3] = Dune::LocalKey(1,1,0); // Edge (0, 0.5)
433 li[4] = Dune::LocalKey(2,1,0); // Edge (0.5, 0.5)
434 li[5] = Dune::LocalKey(2,2,0); // Vertex (0,1)
435 li[6] = Dune::LocalKey(0,0,0); // Element (1/3, 1/3)
436 }
437
439 size_t size () const
440 {
441 return numVertices+numEdges + 1;
442 }
443
445 const Dune::LocalKey& localKey (size_t i) const
446 {
447 return li[i];
448 }
449
450 private:
451 std::vector<Dune::LocalKey> li;
452 };
453
454 template<class LB>
455 class HierarchicalSimplexP2WithElementBubbleLocalInterpolation
456 {
457 public:
458
460 template<typename F, typename C>
461 void interpolate (const F& ff, std::vector<C>& out) const
462 {
463 typename LB::Traits::DomainType x;
464 typename LB::Traits::RangeType y;
465
466 out.resize(7);
467
468 auto&& f = Impl::makeFunctionWithCallOperator<decltype(x)>(ff);
469
470 // vertices
471 x[0] = 0.0; x[1] = 0.0; out[0] = f(x);
472 x[0] = 1.0; x[1] = 0.0; out[2] = f(x);
473 x[0] = 0.0; x[1] = 1.0; out[5] = f(x);
474
475 // edge bubbles
476 x[0] = 0.5; x[1] = 0.0; y = f(x);
477 out[1] = y - out[0]*(1-x[0]) - out[2]*x[0];
478
479 x[0] = 0.0; x[1] = 0.5; y = f(x);
480 out[3] = y - out[0]*(1-x[1]) - out[5]*x[1];
481
482 x[0] = 0.5; x[1] = 0.5; y = f(x);
483 out[4] = y - out[2]*x[0] - out[5]*x[1];
484
485 // element bubble
486 x[0] = 1.0/3; x[1] = 1.0/3; y = f(x);
487
489 HierarchicalSimplexP2WithElementBubbleLocalBasis<double,double,2> shapeFunctions;
490 std::vector<typename LB::Traits::RangeType> sfValues;
491 shapeFunctions.evaluateFunction(x, sfValues);
492
493 out[6] = y;
494 for (int i=0; i<6; i++)
495 out[6] -= out[i]*sfValues[i];
496
497 }
498
499 };
500
501
502}
503#endif
A dense n x m matrix.
Definition: fmatrix.hh:117
vector space out of a tensor product of fields.
Definition: fvector.hh:95
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:75
LocalBasisTraits< D, 1, Dune::FieldVector< D, 1 >, R, 1, Dune::FieldVector< R, 1 >, Dune::FieldMatrix< R, 1, 1 > > Traits
export type traits for function signature
Definition: hierarchicalsimplexp2withelementbubble.hh:54
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:63
unsigned int order() const
Polynomial order of the shape functions (2, in this case)
Definition: hierarchicalsimplexp2withelementbubble.hh:111
unsigned int size() const
number of shape functions
Definition: hierarchicalsimplexp2withelementbubble.hh:57
void partial(const std::array< unsigned int, 1 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:86
unsigned int size() const
number of shape functions
Definition: hierarchicalsimplexp2withelementbubble.hh:147
unsigned int order() const
Polynomial order of the shape functions (3 in this case)
Definition: hierarchicalsimplexp2withelementbubble.hh:229
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:153
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:170
void partial(const std::array< unsigned int, 2 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:189
LocalBasisTraits< D, 2, Dune::FieldVector< D, 2 >, R, 1, Dune::FieldVector< R, 1 >, Dune::FieldMatrix< R, 1, 2 > > Traits
export type traits for function signature
Definition: hierarchicalsimplexp2withelementbubble.hh:144
unsigned int size() const
number of shape functions
Definition: hierarchicalsimplexp2withelementbubble.hh:269
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:275
unsigned int order() const
Polynomial order of the shape functions (4 in this case)
Definition: hierarchicalsimplexp2withelementbubble.hh:379
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:296
void partial(const std::array< unsigned int, 3 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: hierarchicalsimplexp2withelementbubble.hh:318
LocalBasisTraits< D, 3, Dune::FieldVector< D, 3 >, R, 1, Dune::FieldVector< R, 1 >, Dune::FieldMatrix< R, 1, 3 > > Traits
export type traits for function signature
Definition: hierarchicalsimplexp2withelementbubble.hh:266
The local finite element needed for the Zou-Kornhuber estimator for Signorini problems.
Definition: hierarchicalsimplexp2withelementbubble.hh:414
size_t size() const
number of coefficients
Definition: hierarchicalsimplexp2withelementbubble.hh:439
const Dune::LocalKey & localKey(size_t i) const
get i'th index
Definition: hierarchicalsimplexp2withelementbubble.hh:445
HierarchicalSimplexP2WithElementBubbleLocalCoefficients()
Standard constructor.
Definition: hierarchicalsimplexp2withelementbubble.hh:423
Describe position of one degree of freedom.
Definition: localkey.hh:23
Default exception for dummy implementations.
Definition: exceptions.hh:263
Default exception class for range errors.
Definition: exceptions.hh:254
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:218
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:291
Dune namespace.
Definition: alignedallocator.hh:13
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:34
D DomainType
domain type
Definition: localbasis.hh:42
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 21, 23:30, 2024)