Dune Core Modules (2.9.1)

btdmatrix.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
2// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
3// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
4// vi: set et ts=4 sw=2 sts=2:
5#ifndef DUNE_ISTL_BTDMATRIX_HH
6#define DUNE_ISTL_BTDMATRIX_HH
7
13
19namespace Dune {
29 template <class B, class A=std::allocator<B> >
30 class BTDMatrix : public BCRSMatrix<B,A>
31 {
32 public:
33
34 //===== type definitions and constants
35
37 using field_type = typename Imp::BlockTraits<B>::field_type;
38
40 typedef B block_type;
41
43 typedef A allocator_type;
44
46 //typedef BCRSMatrix<B,A>::row_type row_type;
47
49 typedef typename A::size_type size_type;
50
52 [[deprecated("Use free blockLevel function. Will be removed after 2.8.")]]
53 static constexpr auto blocklevel = blockLevel<B>()+1;
54
56 BTDMatrix() : BCRSMatrix<B,A>() {}
57
58 explicit BTDMatrix(size_type size)
59 : BCRSMatrix<B,A>(size, size, BCRSMatrix<B,A>::random)
60 {
61 // Set number of entries for each row
62 // All rows get three entries, except for the first and the last one
63 for (size_t i=0; i<size; i++)
64 this->BCRSMatrix<B,A>::setrowsize(i, 3 - (i==0) - (i==(size-1)));
65
67
68 // The actual entries for each row
69 for (size_t i=0; i<size; i++) {
70 if (i>0)
71 this->BCRSMatrix<B,A>::addindex(i, i-1);
72 this->BCRSMatrix<B,A>::addindex(i, i );
73 if (i<size-1)
74 this->BCRSMatrix<B,A>::addindex(i, i+1);
75 }
76
78 }
79
81 void setSize(size_type size)
82 {
83 auto nonZeros = (size==0) ? 0 : size + 2*(size-1);
84 this->BCRSMatrix<B,A>::setSize(size, // rows
85 size, // columns
86 nonZeros);
87
88 // Set number of entries for each row
89 // All rows get three entries, except for the first and the last one
90 for (size_t i=0; i<size; i++)
91 this->BCRSMatrix<B,A>::setrowsize(i, 3 - (i==0) - (i==(size-1)));
92
94
95 // The actual entries for each row
96 for (size_t i=0; i<size; i++) {
97 if (i>0)
98 this->BCRSMatrix<B,A>::addindex(i, i-1);
99 this->BCRSMatrix<B,A>::addindex(i, i );
100 if (i<size-1)
101 this->BCRSMatrix<B,A>::addindex(i, i+1);
102 }
103
105 }
106
109 this->BCRSMatrix<B,A>::operator=(other);
110 return *this;
111 }
112
116 return *this;
117 }
118
124 template <class V>
125 void solve (V& x, const V& rhs) const {
126
127 // special handling for 1x1 matrices. The generic algorithm doesn't work for them
128 if (this->N()==1) {
129 auto&& x0 = Impl::asVector(x[0]);
130 auto&& rhs0 = Impl::asVector(rhs[0]);
131 Impl::asMatrix((*this)[0][0]).solve(x0, rhs0);
132 return;
133 }
134
135 // Make copies of the rhs and the right matrix band
136 V d = rhs;
137 std::vector<block_type> c(this->N()-1);
138 for (size_t i=0; i<this->N()-1; i++)
139 c[i] = (*this)[i][i+1];
140
141 /* Modify the coefficients. */
142 block_type a_00_inv = (*this)[0][0];
143 Impl::asMatrix(a_00_inv).invert();
144
145 //c[0] /= (*this)[0][0]; /* Division by zero risk. */
146 block_type tmp = a_00_inv;
147 Impl::asMatrix(tmp).rightmultiply(Impl::asMatrix(c[0]));
148 c[0] = tmp;
149
150 // d = a^{-1} d /* Division by zero would imply a singular matrix. */
151 auto d_0_tmp = d[0];
152 auto&& d_0 = Impl::asVector(d[0]);
153 Impl::asMatrix(a_00_inv).mv(Impl::asVector(d_0_tmp),d_0);
154
155 for (unsigned int i = 1; i < this->N(); i++) {
156
157 // id = ( a_ii - c_{i-1} a_{i, i-1} ) ^{-1}
158 block_type tmp;
159 tmp = (*this)[i][i-1];
160 Impl::asMatrix(tmp).rightmultiply(Impl::asMatrix(c[i-1]));
161
162 block_type id = (*this)[i][i];
163 id -= tmp;
164 Impl::asMatrix(id).invert(); /* Division by zero risk. */
165
166 if (i<c.size()) {
167 Impl::asMatrix(c[i]).leftmultiply(Impl::asMatrix(id)); /* Last value calculated is redundant. */
168 }
169
170 // d[i] = (d[i] - d[i-1] * (*this)[i][i-1]) * id;
171 auto&& d_i = Impl::asVector(d[i]);
172 Impl::asMatrix((*this)[i][i-1]).mmv(Impl::asVector(d[i-1]), d_i);
173 auto tmpVec = d[i];
174 Impl::asMatrix(id).mv(Impl::asVector(tmpVec), d_i);
175 }
176
177 /* Now back substitute. */
178 x[this->N() - 1] = d[this->N() - 1];
179 for (int i = this->N() - 2; i >= 0; i--) {
180 //x[i] = d[i] - c[i] * x[i + 1];
181 x[i] = d[i];
182 auto&& x_i = Impl::asVector(x[i]);
183 Impl::asMatrix(c[i]).mmv(Impl::asVector(x[i+1]), x_i);
184 }
185
186 }
187
188 private:
189
190 // ////////////////////////////////////////////////////////////////////////////
191 // The following methods from the base class should now actually be called
192 // ////////////////////////////////////////////////////////////////////////////
193
194 // createbegin and createend should be in there, too, but I can't get it to compile
195 // BCRSMatrix<B,A>::CreateIterator createbegin () {}
196 // BCRSMatrix<B,A>::CreateIterator createend () {}
197 void setrowsize (size_type i, size_type s) {}
198 void incrementrowsize (size_type i) {}
199 void endrowsizes () {}
200 void addindex (size_type row, size_type col) {}
201 void endindices () {}
202 };
203
204 template<typename B, typename A>
205 struct FieldTraits< BTDMatrix<B, A> >
206 {
207 using field_type = typename BTDMatrix<B, A>::field_type;
208 using real_type = typename FieldTraits<field_type>::real_type;
209 };
210
213} // end namespace Dune
214
215#endif
Implementation of the BCRSMatrix class.
Helper functions for determining the vector/matrix block level.
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:466
void endrowsizes()
indicate that size of all rows is defined
Definition: bcrsmatrix.hh:1149
@ random
Build entries randomly.
Definition: bcrsmatrix.hh:530
void addindex(size_type row, size_type col)
add index (row,col) to the matrix
Definition: bcrsmatrix.hh:1191
void endindices()
indicate that all indices are defined, check consistency
Definition: bcrsmatrix.hh:1248
size_type N() const
number of rows (counted in blocks)
Definition: bcrsmatrix.hh:1972
void setSize(size_type rows, size_type columns, size_type nnz=0)
Set the size of the matrix.
Definition: bcrsmatrix.hh:861
BCRSMatrix & operator=(const BCRSMatrix &Mat)
assignment
Definition: bcrsmatrix.hh:911
A block-tridiagonal matrix.
Definition: btdmatrix.hh:31
static constexpr auto blocklevel
increment block level counter
Definition: btdmatrix.hh:53
void solve(V &x, const V &rhs) const
Use the Thomas algorithm to solve the system Ax=b in O(n) time.
Definition: btdmatrix.hh:125
A::size_type size_type
implement row_type with compressed vector
Definition: btdmatrix.hh:49
A allocator_type
export the allocator type
Definition: btdmatrix.hh:43
B block_type
export the type representing the components
Definition: btdmatrix.hh:40
typename Imp::BlockTraits< B >::field_type field_type
export the type representing the field
Definition: btdmatrix.hh:37
BTDMatrix & operator=(const BTDMatrix &other)
assignment
Definition: btdmatrix.hh:108
BTDMatrix()
Default constructor.
Definition: btdmatrix.hh:56
void setSize(size_type size)
Resize the matrix. Invalidates the content!
Definition: btdmatrix.hh:81
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Dune namespace.
Definition: alignedallocator.hh:13
Implements a scalar matrix view wrapper around an existing scalar.
Implements a scalar vector view wrapper around an existing scalar.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 21, 23:30, 2024)