Dune Core Modules (2.9.0)

schwarz.hh
1// SPDX-FileCopyrightText: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
2// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
3// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
4// vi: set et ts=4 sw=2 sts=2:
5#ifndef DUNE_ISTL_SCHWARZ_HH
6#define DUNE_ISTL_SCHWARZ_HH
7
8#include <iostream> // for input/output to shell
9#include <fstream> // for input/output to files
10#include <vector> // STL vector class
11#include <sstream>
12
13#include <cmath> // Yes, we do some math here
14
15#include <dune/common/timer.hh>
16
17#include "io.hh"
18#include "bvector.hh"
19#include "vbvector.hh"
20#include "bcrsmatrix.hh"
21#include "io.hh"
22#include "gsetc.hh"
23#include "ilu.hh"
24#include "operators.hh"
25#include "solvers.hh"
26#include "preconditioners.hh"
27#include "scalarproducts.hh"
28#include "owneroverlapcopy.hh"
29
30namespace Dune {
31
73 template<class M, class X, class Y, class C>
75 {
76 public:
81 typedef M matrix_type;
86 typedef X domain_type;
91 typedef Y range_type;
93 typedef typename X::field_type field_type;
99
108 : _A_(stackobject_to_shared_ptr(A)), communication(com)
109 {}
110
111 OverlappingSchwarzOperator (const std::shared_ptr<matrix_type> A, const communication_type& com)
112 : _A_(A), communication(com)
113 {}
114
116 virtual void apply (const X& x, Y& y) const
117 {
118 y = 0;
119 _A_->umv(x,y); // result is consistent on interior+border
120 communication.project(y); // we want this here to avoid it before the preconditioner
121 // since there d is const!
122 }
123
125 virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
126 {
127 _A_->usmv(alpha,x,y); // result is consistent on interior+border
128 communication.project(y); // we want this here to avoid it before the preconditioner
129 // since there d is const!
130 }
131
133 virtual const matrix_type& getmat () const
134 {
135 return *_A_;
136 }
137
140 {
142 }
143
144
147 {
148 return communication;
149 }
150 private:
151 const std::shared_ptr<const matrix_type>_A_;
152 const communication_type& communication;
153 };
154
157 /*
158 * @addtogroup ISTL_Prec
159 * @{
160 */
174 template<class M, class X, class Y, class C>
175 class ParSSOR : public Preconditioner<X,Y> {
176 public:
178 typedef M matrix_type;
180 typedef X domain_type;
182 typedef Y range_type;
184 typedef typename X::field_type field_type;
187
197 ParSSOR (const matrix_type& A, int n, field_type w, const communication_type& c)
198 : _A_(A), _n(n), _w(w), communication(c)
199 { }
200
206 virtual void pre (X& x, [[maybe_unused]] Y& b)
207 {
208 communication.copyOwnerToAll(x,x); // make dirichlet values consistent
209 }
210
216 virtual void apply (X& v, const Y& d)
217 {
218 for (int i=0; i<_n; i++) {
219 bsorf(_A_,v,d,_w);
220 bsorb(_A_,v,d,_w);
221 }
222 communication.copyOwnerToAll(v,v);
223 }
224
230 virtual void post ([[maybe_unused]] X& x) {}
231
234 {
236 }
237
238 private:
240 const matrix_type& _A_;
242 int _n;
244 field_type _w;
246 const communication_type& communication;
247 };
248
249 namespace Amg
250 {
251 template<class T> struct ConstructionTraits;
252 }
253
277 template<class X, class Y, class C, class P=Preconditioner<X,Y> >
279 friend struct Amg::ConstructionTraits<BlockPreconditioner<X,Y,C,P> >;
280 public:
285 typedef X domain_type;
290 typedef Y range_type;
292 typedef typename X::field_type field_type;
298
307 : _preconditioner(stackobject_to_shared_ptr(p)), _communication(c)
308 { }
309
317 BlockPreconditioner (const std::shared_ptr<P>& p, const communication_type& c)
318 : _preconditioner(p), _communication(c)
319 { }
320
326 virtual void pre (X& x, Y& b)
327 {
328 _communication.copyOwnerToAll(x,x); // make dirichlet values consistent
329 _preconditioner->pre(x,b);
330 }
331
337 virtual void apply (X& v, const Y& d)
338 {
339 _preconditioner->apply(v,d);
340 _communication.copyOwnerToAll(v,v);
341 }
342
343 template<bool forward>
344 void apply (X& v, const Y& d)
345 {
346 _preconditioner->template apply<forward>(v,d);
347 _communication.copyOwnerToAll(v,v);
348 }
349
355 virtual void post (X& x)
356 {
357 _preconditioner->post(x);
358 }
359
362 {
364 }
365
366 private:
368 std::shared_ptr<P> _preconditioner;
369
371 const communication_type& _communication;
372 };
373
376} // end namespace
377
378#endif
Implementation of the BCRSMatrix class.
This file implements a vector space as a tensor product of a given vector space. The number of compon...
A linear operator exporting itself in matrix form.
Definition: operators.hh:109
Block parallel preconditioner.
Definition: schwarz.hh:278
virtual void pre(X &x, Y &b)
Prepare the preconditioner.
Definition: schwarz.hh:326
X domain_type
The domain type of the preconditioner.
Definition: schwarz.hh:285
BlockPreconditioner(const std::shared_ptr< P > &p, const communication_type &c)
Constructor.
Definition: schwarz.hh:317
virtual void apply(X &v, const Y &d)
Apply the preconditioner.
Definition: schwarz.hh:337
BlockPreconditioner(P &p, const communication_type &c)
Constructor.
Definition: schwarz.hh:306
void apply(X &v, const Y &d)
Apply one step of the preconditioner to the system A(v)=d.
Definition: schwarz.hh:344
C communication_type
The type of the communication object..
Definition: schwarz.hh:297
X::field_type field_type
The field type of the preconditioner.
Definition: schwarz.hh:292
virtual void post(X &x)
Clean up.
Definition: schwarz.hh:355
Y range_type
The range type of the preconditioner.
Definition: schwarz.hh:290
virtual SolverCategory::Category category() const
Category of the preconditioner (see SolverCategory::Category)
Definition: schwarz.hh:361
X::field_type field_type
The field type of the operator.
Definition: operators.hh:74
An overlapping Schwarz operator.
Definition: schwarz.hh:75
const communication_type & getCommunication() const
Get the object responsible for communication.
Definition: schwarz.hh:146
virtual const matrix_type & getmat() const
get the sequential assembled linear operator.
Definition: schwarz.hh:133
virtual void applyscaleadd(field_type alpha, const X &x, Y &y) const
apply operator to x, scale and add:
Definition: schwarz.hh:125
virtual void apply(const X &x, Y &y) const
apply operator to x:
Definition: schwarz.hh:116
C communication_type
The type of the communication object.
Definition: schwarz.hh:98
X domain_type
The type of the domain.
Definition: schwarz.hh:86
M matrix_type
The type of the matrix we operate on.
Definition: schwarz.hh:81
Y range_type
The type of the range.
Definition: schwarz.hh:91
X::field_type field_type
The field type of the range.
Definition: schwarz.hh:93
OverlappingSchwarzOperator(const matrix_type &A, const communication_type &com)
constructor: just store a reference to a matrix.
Definition: schwarz.hh:107
virtual SolverCategory::Category category() const
Category of the linear operator (see SolverCategory::Category)
Definition: schwarz.hh:139
A parallel SSOR preconditioner.
Definition: schwarz.hh:175
X::field_type field_type
The field type of the preconditioner.
Definition: schwarz.hh:184
C communication_type
The type of the communication object.
Definition: schwarz.hh:186
virtual SolverCategory::Category category() const
Category of the preconditioner (see SolverCategory::Category)
Definition: schwarz.hh:233
ParSSOR(const matrix_type &A, int n, field_type w, const communication_type &c)
Constructor.
Definition: schwarz.hh:197
virtual void post(X &x)
Clean up.
Definition: schwarz.hh:230
X domain_type
The domain type of the preconditioner.
Definition: schwarz.hh:180
Y range_type
The range type of the preconditioner.
Definition: schwarz.hh:182
M matrix_type
The matrix type the preconditioner is for.
Definition: schwarz.hh:178
virtual void apply(X &v, const Y &d)
Apply the precondtioner.
Definition: schwarz.hh:216
virtual void pre(X &x, Y &b)
Prepare the preconditioner.
Definition: schwarz.hh:206
Base class for matrix free definition of preconditioners.
Definition: preconditioner.hh:32
X::field_type field_type
The field type of the preconditioner.
Definition: preconditioner.hh:39
Some generic functions for pretty printing vectors and matrices.
void bsorb(const M &A, X &x, const Y &b, const K &w)
SSOR step.
Definition: gsetc.hh:646
void bsorf(const M &A, X &x, const Y &b, const K &w)
SOR step.
Definition: gsetc.hh:634
Simple iterative methods like Jacobi, Gauss-Seidel, SOR, SSOR, etc. in a generic way.
The incomplete LU factorization kernels.
Dune namespace.
Definition: alignedallocator.hh:13
std::shared_ptr< T > stackobject_to_shared_ptr(T &t)
Create a shared_ptr for a stack-allocated object.
Definition: shared_ptr.hh:72
Define general, extensible interface for operators. The available implementation wraps a matrix.
Classes providing communication interfaces for overlapping Schwarz methods.
Define general preconditioner interface.
Define base class for scalar product and norm.
Implementations of the inverse operator interface.
Traits class for generically constructing non default constructable types.
Definition: construction.hh:39
Category
Definition: solvercategory.hh:23
@ overlapping
Category for overlapping solvers.
Definition: solvercategory.hh:29
A simple timing class.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)