Loading [MathJax]/jax/output/HTML-CSS/config.js

Dune Core Modules (2.9.0)

raviartthomas3cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
6#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
7
8#include <vector>
9
11#include <dune/localfunctions/common/localinterpolation.hh>
12
13namespace Dune
14{
15
24 template<class LB>
26 {
27
28 public:
29
35 RT3Cube2DLocalInterpolation (std::bitset<4> s = 0)
36 {
37 for (size_t i=0; i<4; i++)
38 sign_[i] = (s[i]) ? -1.0 : 1.0;
39
40 n_[0] = {-1.0, 0.0};
41 n_[1] = { 1.0, 0.0};
42 n_[2] = { 0.0, -1.0};
43 n_[3] = { 0.0, 1.0};
44 }
45
54 template<typename F, typename C>
55 void interpolate (const F& ff, std::vector<C>& out) const
56 {
57 // f gives v*outer normal at a point on the edge!
58 typedef typename LB::Traits::RangeFieldType Scalar;
59 typedef typename LB::Traits::DomainFieldType Vector;
60
61 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
62
63 out.resize(40);
64 fill(out.begin(), out.end(), 0.0);
65
66 const int qOrder = 9;
67 const auto& rule1 = QuadratureRules<Scalar,1>::rule(GeometryTypes::cube(1), qOrder);
68
69 for (auto&& qp : rule1)
70 {
71 Scalar qPos = qp.position();
72 typename LB::Traits::DomainType localPos;
73
74 localPos = {0.0, qPos};
75 auto y = f(localPos);
76 out[0] += (y[0]*n_[0][0] + y[1]*n_[0][1])*qp.weight()*sign_[0];
77 out[1] += (y[0]*n_[0][0] + y[1]*n_[0][1])*(2.0*qPos - 1.0)*qp.weight();
78 out[2] += (y[0]*n_[0][0] + y[1]*n_[0][1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*qp.weight()*sign_[0];
79 out[3] += (y[0]*n_[0][0] + y[1]*n_[0][1])*(20.0*qPos*qPos*qPos - 30.0*qPos*qPos + 12.0*qPos - 1.0)*qp.weight();
80
81 localPos = {1.0, qPos};
82 y = f(localPos);
83 out[4] += (y[0]*n_[1][0] + y[1]*n_[1][1])*qp.weight()*sign_[1];
84 out[5] += (y[0]*n_[1][0] + y[1]*n_[1][1])*(1.0 - 2.0*qPos)*qp.weight();
85 out[6] += (y[0]*n_[1][0] + y[1]*n_[1][1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*qp.weight()*sign_[1];
86 out[7] += (y[0]*n_[1][0] + y[1]*n_[1][1])*(-20.0*qPos*qPos*qPos + 30.0*qPos*qPos - 12.0*qPos + 1.0)*qp.weight();
87
88 localPos = {qPos, 0.0};
89 y = f(localPos);
90 out[8] += (y[0]*n_[2][0] + y[1]*n_[2][1])*qp.weight()*sign_[2];
91 out[9] += (y[0]*n_[2][0] + y[1]*n_[2][1])*(1.0 - 2.0*qPos)*qp.weight();
92 out[10] += (y[0]*n_[2][0] + y[1]*n_[2][1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*qp.weight()*sign_[2];
93 out[11] += (y[0]*n_[2][0] + y[1]*n_[2][1])*(-20.0*qPos*qPos*qPos + 30.0*qPos*qPos - 12.0*qPos + 1.0)*qp.weight();
94
95 localPos = {qPos, 1.0};
96 y = f(localPos);
97 out[12] += (y[0]*n_[3][0] + y[1]*n_[3][1])*qp.weight()*sign_[3];
98 out[13] += (y[0]*n_[3][0] + y[1]*n_[3][1])*(2.0*qPos - 1.0)*qp.weight();
99 out[14] += (y[0]*n_[3][0] + y[1]*n_[3][1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*qp.weight()*sign_[3];
100 out[15] += (y[0]*n_[3][0] + y[1]*n_[3][1])*(20.0*qPos*qPos*qPos - 30.0*qPos*qPos + 12.0*qPos - 1.0)*qp.weight();
101 }
102
103 const auto& rule2 = QuadratureRules<Vector,2>::rule(GeometryTypes::cube(2), qOrder);
104
105 for (auto&& qp : rule2)
106 {
107 auto qPos = qp.position();
108
109 auto y = f(qPos);
110 double l0_x=1.0;
111 double l1_x=2.0*qPos[0]-1.0;
112 double l2_x=6.0*qPos[0]*qPos[0]-6.0*qPos[0]+1.0;
113 double l3_x=20.0*qPos[0]*qPos[0]*qPos[0] - 30.0*qPos[0]*qPos[0] + 12.0*qPos[0] - 1.0;
114 double l0_y=1.0;
115 double l1_y=2.0*qPos[1]-1.0;
116 double l2_y=6.0*qPos[1]*qPos[1]-6.0*qPos[1]+1.0;
117 double l3_y=20.0*qPos[1]*qPos[1]*qPos[1] - 30.0*qPos[1]*qPos[1] + 12.0*qPos[1] - 1.0;
118
119 out[16] += y[0]*l0_x*l0_y*qp.weight();
120 out[17] += y[0]*l0_x*l1_y*qp.weight();
121 out[18] += y[0]*l0_x*l2_y*qp.weight();
122 out[19] += y[0]*l0_x*l3_y*qp.weight();
123 out[20] += y[0]*l1_x*l0_y*qp.weight();
124 out[21] += y[0]*l1_x*l1_y*qp.weight();
125 out[22] += y[0]*l1_x*l2_y*qp.weight();
126 out[23] += y[0]*l1_x*l3_y*qp.weight();
127 out[24] += y[0]*l2_x*l0_y*qp.weight();
128 out[25] += y[0]*l2_x*l1_y*qp.weight();
129 out[26] += y[0]*l2_x*l2_y*qp.weight();
130 out[27] += y[0]*l2_x*l3_y*qp.weight();
131
132 out[28] += y[1]*l0_x*l0_y*qp.weight();
133 out[29] += y[1]*l0_x*l1_y*qp.weight();
134 out[30] += y[1]*l0_x*l2_y*qp.weight();
135 out[31] += y[1]*l1_x*l0_y*qp.weight();
136 out[32] += y[1]*l1_x*l1_y*qp.weight();
137 out[33] += y[1]*l1_x*l2_y*qp.weight();
138 out[34] += y[1]*l2_x*l0_y*qp.weight();
139 out[35] += y[1]*l2_x*l1_y*qp.weight();
140 out[36] += y[1]*l2_x*l2_y*qp.weight();
141 out[37] += y[1]*l3_x*l0_y*qp.weight();
142 out[38] += y[1]*l3_x*l1_y*qp.weight();
143 out[39] += y[1]*l3_x*l2_y*qp.weight();
144 }
145 }
146
147 private:
148 // Edge orientations
149 std::array<typename LB::Traits::RangeFieldType, 4> sign_;
150
151 // Edge normals
152 std::array<typename LB::Traits::DomainType, 4> n_;
153 };
154}
155
156#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:266
Second order Raviart-Thomas shape functions on the reference quadrilateral.
Definition: raviartthomas3cube2dlocalinterpolation.hh:26
RT3Cube2DLocalInterpolation(std::bitset< 4 > s=0)
Make set number s, where 0 <= s < 16.
Definition: raviartthomas3cube2dlocalinterpolation.hh:35
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas3cube2dlocalinterpolation.hh:55
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:472
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jan 5, 23:30, 2025)