Dune Core Modules (2.9.0)

raviartthomas1cube3dlocalinterpolation.hh
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 // SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4 // SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5 #ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
6 #define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
7 
8 #include <vector>
9 
11 #include <dune/localfunctions/common/localinterpolation.hh>
12 
13 namespace Dune
14 {
23  template<class LB>
25  {
26 
27  public:
28 
34  RT1Cube3DLocalInterpolation (std::bitset<6> s = 0)
35  {
36  for (size_t i=0; i<6; i++)
37  sign_[i] = (s[i]) ? -1.0 : 1.0;
38 
39  n_[0] = {-1.0, 0.0, 0.0};
40  n_[1] = { 1.0, 0.0, 0.0};
41  n_[2] = { 0.0, -1.0, 0.0};
42  n_[3] = { 0.0, 1.0, 0.0};
43  n_[4] = { 0.0, 0.0, -1.0};
44  n_[5] = { 0.0, 0.0, 1.0};
45  }
46 
55  template<class F, class C>
56  void interpolate (const F& ff, std::vector<C>& out) const
57  {
58  // f gives v*outer normal at a point on the edge!
59  typedef typename LB::Traits::RangeFieldType Scalar;
60  typedef typename LB::Traits::DomainFieldType Vector;
61 
62  auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
63 
64  out.resize(36);
65  fill(out.begin(), out.end(), 0.0);
66 
67  const int qOrder = 3;
68  const auto& rule1 = QuadratureRules<Scalar,2>::rule(GeometryTypes::cube(2), qOrder);
69 
70  for (auto&& qp : rule1)
71  {
72  Dune::FieldVector<Scalar,2> qPos = qp.position();
73  typename LB::Traits::DomainType localPos;
74 
75  localPos = {0.0, qPos[0], qPos[1]};
76  auto y = f(localPos);
77  out[0] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*qp.weight()*sign_[0];
78  out[6] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*(2.0*qPos[0] - 1.0)*qp.weight();
79  out[12] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*(2.0*qPos[1] - 1.0)*qp.weight();
80  out[18] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*qp.weight();
81 
82  localPos = {1.0, qPos[0], qPos[1]};
83  y = f(localPos);
84  out[1] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*qp.weight()*sign_[1];
85  out[7] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*(1.0 - 2.0*qPos[0])*qp.weight();
86  out[13] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*(1.0 - 2.0*qPos[1])*qp.weight();
87  out[19] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*qp.weight();
88 
89  localPos = {qPos[0], 0.0, qPos[1]};
90  y = f(localPos);
91  out[2] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*qp.weight()*sign_[2];
92  out[8] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*(1.0 - 2.0*qPos[0])*qp.weight();
93  out[14] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*(2.0*qPos[1] - 1.0)*qp.weight();
94  out[20] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*qp.weight();
95 
96  localPos = {qPos[0], 1.0, qPos[1]};
97  y = f(localPos);
98  out[3] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*qp.weight()*sign_[3];
99  out[9] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*(2.0*qPos[0] - 1.0)*qp.weight();
100  out[15] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*(1.0 - 2.0*qPos[1])*qp.weight();
101  out[21] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*qp.weight();
102 
103  localPos = {qPos[0], qPos[1], 0.0};
104  y = f(localPos);
105  out[4] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*qp.weight()*sign_[4];
106  out[10] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*(1.0 - 2.0*qPos[0])*qp.weight();
107  out[16] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*(1.0 - 2.0*qPos[1])*qp.weight();
108  out[22] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*qp.weight();
109 
110  localPos = {qPos[0], qPos[1], 1.0};
111  y = f(localPos);
112  out[5] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*qp.weight()*sign_[5];
113  out[11] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*(2.0*qPos[0] - 1.0)*qp.weight();
114  out[17] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*(2.0*qPos[1] - 1.0)*qp.weight();
115  out[23] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*qp.weight();
116  }
117 
118  const auto& rule2 = QuadratureRules<Vector,3>::rule(GeometryTypes::cube(3), qOrder);
119  for (auto&& qp : rule2)
120  {
121  FieldVector<double,3> qPos = qp.position();
122 
123  auto y = f(qPos);
124  out[24] += y[0]*qp.weight();
125  out[25] += y[1]*qp.weight();
126  out[26] += y[2]*qp.weight();
127  out[27] += y[0]*qPos[1]*qp.weight();
128  out[28] += y[0]*qPos[2]*qp.weight();
129  out[29] += y[1]*qPos[0]*qp.weight();
130  out[30] += y[1]*qPos[2]*qp.weight();
131  out[31] += y[2]*qPos[0]*qp.weight();
132  out[32] += y[2]*qPos[1]*qp.weight();
133  out[33] += y[0]*qPos[1]*qPos[2]*qp.weight();
134  out[34] += y[1]*qPos[0]*qPos[2]*qp.weight();
135  out[35] += y[2]*qPos[0]*qPos[1]*qp.weight();
136  }
137  }
138 
139  private:
140  // Facet orientations
141  std::array<typename LB::Traits::RangeFieldType, 6> sign_;
142 
143  // Facet normals
144  std::array<typename LB::Traits::DomainType, 6> n_;
145  };
146 }
147 #endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:95
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:266
First order Raviart-Thomas shape functions on the reference hexahedron.
Definition: raviartthomas1cube3dlocalinterpolation.hh:25
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas1cube3dlocalinterpolation.hh:56
RT1Cube3DLocalInterpolation(std::bitset< 6 > s=0)
Make set number s, where 0 <= s < 64.
Definition: raviartthomas1cube3dlocalinterpolation.hh:34
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:472
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (Apr 27, 22:29, 2024)