Dune Core Modules (2.9.0)

raviartthomas1cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE2D_LOCALINTERPOLATION_HH
6#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE2D_LOCALINTERPOLATION_HH
7
8#include <vector>
9
11#include <dune/localfunctions/common/localinterpolation.hh>
12
13
14namespace Dune
15{
16
25 template<class LB>
27 {
28
29 public:
35 RT1Cube2DLocalInterpolation (std::bitset<4> s = 0)
36 {
37 for (size_t i=0; i<4; i++)
38 sign_[i] = (s[i]) ? -1.0 : 1.0;
39
40 n_[0] = {-1.0, 0.0};
41 n_[1] = { 1.0, 0.0};
42 n_[2] = { 0.0, -1.0};
43 n_[3] = { 0.0, 1.0};
44 }
45
54 template<class F, class C>
55 void interpolate (const F& ff, std::vector<C>& out) const
56 {
57 // f gives v*outer normal at a point on the edge!
58 typedef typename LB::Traits::RangeFieldType Scalar;
59 typedef typename LB::Traits::DomainFieldType Vector;
60
61 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
62
63 out.resize(12);
64 fill(out.begin(), out.end(), 0.0);
65
66 const int qOrder = 3;
67 const auto& rule1 = QuadratureRules<Scalar,1>::rule(GeometryTypes::cube(1), qOrder);
68
69 for (auto&& qp : rule1)
70 {
71 Scalar qPos = qp.position();
72 typename LB::Traits::DomainType localPos = {0.0, qPos};
73
74 auto y = f(localPos);
75 out[0] += (y[0]*n_[0][0] + y[1]*n_[0][1])*qp.weight()*sign_[0];
76 out[1] += (y[0]*n_[0][0] + y[1]*n_[0][1])*(2.0*qPos - 1.0)*qp.weight();
77
78 localPos = {1.0, qPos};
79 y = f(localPos);
80 out[2] += (y[0]*n_[1][0] + y[1]*n_[1][1])*qp.weight()*sign_[1];
81 out[3] += (y[0]*n_[1][0] + y[1]*n_[1][1])*(1.0 - 2.0*qPos)*qp.weight();
82
83 localPos = {qPos, 0.0};
84 y = f(localPos);
85 out[4] += (y[0]*n_[2][0] + y[1]*n_[2][1])*qp.weight()*sign_[2];
86 out[5] += (y[0]*n_[2][0] + y[1]*n_[2][1])*(1.0 - 2.0*qPos)*qp.weight();
87
88 localPos = {qPos, 1.0};
89 y = f(localPos);
90 out[6] += (y[0]*n_[3][0] + y[1]*n_[3][1])*qp.weight()*sign_[3];
91 out[7] += (y[0]*n_[3][0] + y[1]*n_[3][1])*(2.0*qPos - 1.0)*qp.weight();
92 }
93
94 const auto& rule2 = QuadratureRules<Vector,2>::rule(GeometryTypes::cube(2), qOrder);
95
96 for (auto&& qp : rule2)
97 {
98 auto qPos = qp.position();
99
100 auto y = f(qPos);
101 out[8] += y[0]*qp.weight();
102 out[9] += y[1]*qp.weight();
103 out[10] += y[0]*qPos[1]*qp.weight();
104 out[11] += y[1]*qPos[0]*qp.weight();
105 }
106 }
107
108 private:
109 // Edge orientations
110 std::array<typename LB::Traits::RangeFieldType, 4> sign_;
111
112 // Edge normals
113 std::array<typename LB::Traits::DomainType, 4> n_;
114 };
115}
116#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE2D_LOCALINTERPOLATION_HH
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:266
First order Raviart-Thomas shape functions on the reference quadrilateral.
Definition: raviartthomas1cube2dlocalinterpolation.hh:27
RT1Cube2DLocalInterpolation(std::bitset< 4 > s=0)
Make set number s, where 0 <= s < 16.
Definition: raviartthomas1cube2dlocalinterpolation.hh:35
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas1cube2dlocalinterpolation.hh:55
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:472
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)