Dune Core Modules (2.9.0)

mpicommunication.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_COMMON_PARALLEL_MPICOMMUNICATION_HH
6#define DUNE_COMMON_PARALLEL_MPICOMMUNICATION_HH
7
16#if HAVE_MPI
17
18#include <algorithm>
19#include <functional>
20#include <memory>
21
22#include <mpi.h>
23
28#include <dune/common/parallel/mpifuture.hh>
30
31namespace Dune
32{
33
34 //=======================================================
35 // use singleton pattern and template specialization to
36 // generate MPI operations
37 //=======================================================
38
39 template<typename Type, typename BinaryFunction, typename Enable=void>
40 class Generic_MPI_Op
41 {
42
43 public:
44 static MPI_Op get ()
45 {
46 if (!op)
47 {
48 op = std::make_unique<MPI_Op>();
49 // The following line leaks an MPI operation object, because the corresponding
50 //`MPI_Op_free` is never called. It is never called because there is no easy
51 // way to call it at the right moment: right before the call to MPI_Finalize.
52 // See https://gitlab.dune-project.org/core/dune-istl/issues/80
53 MPI_Op_create((void (*)(void*, void*, int*, MPI_Datatype*))&operation,true,op.get());
54 }
55 return *op;
56 }
57 private:
58 static void operation (Type *in, Type *inout, int *len, MPI_Datatype*)
59 {
60 BinaryFunction func;
61
62 for (int i=0; i< *len; ++i, ++in, ++inout) {
63 Type temp;
64 temp = func(*in, *inout);
65 *inout = temp;
66 }
67 }
68 Generic_MPI_Op () {}
69 Generic_MPI_Op (const Generic_MPI_Op& ) {}
70 static std::unique_ptr<MPI_Op> op;
71 };
72
73
74 template<typename Type, typename BinaryFunction, typename Enable>
75 std::unique_ptr<MPI_Op> Generic_MPI_Op<Type,BinaryFunction, Enable>::op;
76
77#define ComposeMPIOp(func,op) \
78 template<class T, class S> \
79 class Generic_MPI_Op<T, func<S>, std::enable_if_t<MPITraits<S>::is_intrinsic> >{ \
80 public: \
81 static MPI_Op get(){ \
82 return op; \
83 } \
84 private: \
85 Generic_MPI_Op () {} \
86 Generic_MPI_Op (const Generic_MPI_Op & ) {} \
87 }
88
89
90 ComposeMPIOp(std::plus, MPI_SUM);
91 ComposeMPIOp(std::multiplies, MPI_PROD);
92 ComposeMPIOp(Min, MPI_MIN);
93 ComposeMPIOp(Max, MPI_MAX);
94
95#undef ComposeMPIOp
96
97
98 //=======================================================
99 // use singleton pattern and template specialization to
100 // generate MPI operations
101 //=======================================================
102
106 template<>
107 class Communication<MPI_Comm>
108 {
109 public:
111 Communication (const MPI_Comm& c = MPI_COMM_WORLD)
112 : communicator(c)
113 {
114 if(communicator!=MPI_COMM_NULL) {
115 int initialized = 0;
116 MPI_Initialized(&initialized);
117 if (!initialized)
118 DUNE_THROW(ParallelError,"You must call MPIHelper::instance(argc,argv) in your main() function before using the MPI Communication!");
119 MPI_Comm_rank(communicator,&me);
120 MPI_Comm_size(communicator,&procs);
121 }else{
122 procs=0;
123 me=-1;
124 }
125 }
126
128 int rank () const
129 {
130 return me;
131 }
132
134 int size () const
135 {
136 return procs;
137 }
138
140 template<class T>
141 int send(const T& data, int dest_rank, int tag) const
142 {
143 auto mpi_data = getMPIData(data);
144 return MPI_Send(mpi_data.ptr(), mpi_data.size(), mpi_data.type(),
145 dest_rank, tag, communicator);
146 }
147
149 template<class T>
150 MPIFuture<const T> isend(const T&& data, int dest_rank, int tag) const
151 {
152 MPIFuture<const T> future(std::forward<const T>(data));
153 auto mpidata = future.get_mpidata();
154 MPI_Isend(mpidata.ptr(), mpidata.size(), mpidata.type(),
155 dest_rank, tag, communicator, &future.req_);
156 return future;
157 }
158
160 template<class T>
161 T recv(T&& data, int source_rank, int tag, MPI_Status* status = MPI_STATUS_IGNORE) const
162 {
163 T lvalue_data(std::forward<T>(data));
164 auto mpi_data = getMPIData(lvalue_data);
165 MPI_Recv(mpi_data.ptr(), mpi_data.size(), mpi_data.type(),
166 source_rank, tag, communicator, status);
167 return lvalue_data;
168 }
169
171 template<class T>
172 MPIFuture<T> irecv(T&& data, int source_rank, int tag) const
173 {
174 MPIFuture<T> future(std::forward<T>(data));
175 auto mpidata = future.get_mpidata();
176 MPI_Irecv(mpidata.ptr(), mpidata.size(), mpidata.type(),
177 source_rank, tag, communicator, &future.req_);
178 return future;
179 }
180
181 template<class T>
182 T rrecv(T&& data, int source_rank, int tag, MPI_Status* status = MPI_STATUS_IGNORE) const
183 {
184 MPI_Status _status;
185 MPI_Message _message;
186 T lvalue_data(std::forward<T>(data));
187 auto mpi_data = getMPIData(lvalue_data);
188 static_assert(!mpi_data.static_size, "rrecv work only for non-static-sized types.");
189 if(status == MPI_STATUS_IGNORE)
190 status = &_status;
191 MPI_Mprobe(source_rank, tag, communicator, &_message, status);
192 int size;
193 MPI_Get_count(status, mpi_data.type(), &size);
194 mpi_data.resize(size);
195 MPI_Mrecv(mpi_data.ptr(), mpi_data.size(), mpi_data.type(), &_message, status);
196 return lvalue_data;
197 }
198
200 template<typename T>
201 T sum (const T& in) const
202 {
203 T out;
204 allreduce<std::plus<T> >(&in,&out,1);
205 return out;
206 }
207
209 template<typename T>
210 int sum (T* inout, int len) const
211 {
212 return allreduce<std::plus<T> >(inout,len);
213 }
214
216 template<typename T>
217 T prod (const T& in) const
218 {
219 T out;
220 allreduce<std::multiplies<T> >(&in,&out,1);
221 return out;
222 }
223
225 template<typename T>
226 int prod (T* inout, int len) const
227 {
228 return allreduce<std::multiplies<T> >(inout,len);
229 }
230
232 template<typename T>
233 T min (const T& in) const
234 {
235 T out;
236 allreduce<Min<T> >(&in,&out,1);
237 return out;
238 }
239
241 template<typename T>
242 int min (T* inout, int len) const
243 {
244 return allreduce<Min<T> >(inout,len);
245 }
246
247
249 template<typename T>
250 T max (const T& in) const
251 {
252 T out;
253 allreduce<Max<T> >(&in,&out,1);
254 return out;
255 }
256
258 template<typename T>
259 int max (T* inout, int len) const
260 {
261 return allreduce<Max<T> >(inout,len);
262 }
263
265 int barrier () const
266 {
267 return MPI_Barrier(communicator);
268 }
269
272 {
273 MPIFuture<void> future(true); // make a valid MPIFuture<void>
274 MPI_Ibarrier(communicator, &future.req_);
275 return future;
276 }
277
278
280 template<typename T>
281 int broadcast (T* inout, int len, int root) const
282 {
283 return MPI_Bcast(inout,len,MPITraits<T>::getType(),root,communicator);
284 }
285
287 template<class T>
288 MPIFuture<T> ibroadcast(T&& data, int root) const{
289 MPIFuture<T> future(std::forward<T>(data));
290 auto mpidata = future.get_mpidata();
291 MPI_Ibcast(mpidata.ptr(),
292 mpidata.size(),
293 mpidata.type(),
294 root,
295 communicator,
296 &future.req_);
297 return future;
298 }
299
302 template<typename T>
303 int gather (const T* in, T* out, int len, int root) const
304 {
305 return MPI_Gather(const_cast<T*>(in),len,MPITraits<T>::getType(),
306 out,len,MPITraits<T>::getType(),
307 root,communicator);
308 }
309
311 template<class TIN, class TOUT = std::vector<TIN>>
312 MPIFuture<TOUT, TIN> igather(TIN&& data_in, TOUT&& data_out, int root) const{
313 MPIFuture<TOUT, TIN> future(std::forward<TOUT>(data_out), std::forward<TIN>(data_in));
314 auto mpidata_in = future.get_send_mpidata();
315 auto mpidata_out = future.get_mpidata();
316 assert(root != me || mpidata_in.size()*procs <= mpidata_out.size());
317 int outlen = (me==root) * mpidata_in.size();
318 MPI_Igather(mpidata_in.ptr(), mpidata_in.size(), mpidata_in.type(),
319 mpidata_out.ptr(), outlen, mpidata_out.type(),
320 root, communicator, &future.req_);
321 return future;
322 }
323
325 template<typename T>
326 int gatherv (const T* in, int sendDataLen, T* out, int* recvDataLen, int* displ, int root) const
327 {
328 return MPI_Gatherv(const_cast<T*>(in),sendDataLen,MPITraits<T>::getType(),
329 out,recvDataLen,displ,MPITraits<T>::getType(),
330 root,communicator);
331 }
332
335 template<typename T>
336 int scatter (const T* sendData, T* recvData, int len, int root) const
337 {
338 return MPI_Scatter(const_cast<T*>(sendData),len,MPITraits<T>::getType(),
339 recvData,len,MPITraits<T>::getType(),
340 root,communicator);
341 }
342
344 template<class TIN, class TOUT = TIN>
345 MPIFuture<TOUT, TIN> iscatter(TIN&& data_in, TOUT&& data_out, int root) const
346 {
347 MPIFuture<TOUT, TIN> future(std::forward<TOUT>(data_out), std::forward<TIN>(data_in));
348 auto mpidata_in = future.get_send_mpidata();
349 auto mpidata_out = future.get_mpidata();
350 int inlen = (me==root) * mpidata_in.size()/procs;
351 MPI_Iscatter(mpidata_in.ptr(), inlen, mpidata_in.type(),
352 mpidata_out.ptr(), mpidata_out.size(), mpidata_out.type(),
353 root, communicator, &future.req_);
354 return future;
355 }
356
358 template<typename T>
359 int scatterv (const T* sendData, int* sendDataLen, int* displ, T* recvData, int recvDataLen, int root) const
360 {
361 return MPI_Scatterv(const_cast<T*>(sendData),sendDataLen,displ,MPITraits<T>::getType(),
362 recvData,recvDataLen,MPITraits<T>::getType(),
363 root,communicator);
364 }
365
366
367 operator MPI_Comm () const
368 {
369 return communicator;
370 }
371
373 template<typename T, typename T1>
374 int allgather(const T* sbuf, int count, T1* rbuf) const
375 {
376 return MPI_Allgather(const_cast<T*>(sbuf), count, MPITraits<T>::getType(),
377 rbuf, count, MPITraits<T1>::getType(),
378 communicator);
379 }
380
382 template<class TIN, class TOUT = TIN>
383 MPIFuture<TOUT, TIN> iallgather(TIN&& data_in, TOUT&& data_out) const
384 {
385 MPIFuture<TOUT, TIN> future(std::forward<TOUT>(data_out), std::forward<TIN>(data_in));
386 auto mpidata_in = future.get_send_mpidata();
387 auto mpidata_out = future.get_mpidata();
388 assert(mpidata_in.size()*procs <= mpidata_out.size());
389 int outlen = mpidata_in.size();
390 MPI_Iallgather(mpidata_in.ptr(), mpidata_in.size(), mpidata_in.type(),
391 mpidata_out.ptr(), outlen, mpidata_out.type(),
392 communicator, &future.req_);
393 return future;
394 }
395
397 template<typename T>
398 int allgatherv (const T* in, int sendDataLen, T* out, int* recvDataLen, int* displ) const
399 {
400 return MPI_Allgatherv(const_cast<T*>(in),sendDataLen,MPITraits<T>::getType(),
401 out,recvDataLen,displ,MPITraits<T>::getType(),
402 communicator);
403 }
404
406 template<typename BinaryFunction, typename Type>
407 int allreduce(Type* inout, int len) const
408 {
409 Type* out = new Type[len];
410 int ret = allreduce<BinaryFunction>(inout,out,len);
411 std::copy(out, out+len, inout);
412 delete[] out;
413 return ret;
414 }
415
416 template<typename BinaryFunction, typename Type>
417 Type allreduce(Type&& in) const{
418 Type lvalue_data = std::forward<Type>(in);
419 auto data = getMPIData(lvalue_data);
420 MPI_Allreduce(MPI_IN_PLACE, data.ptr(), data.size(), data.type(),
421 (Generic_MPI_Op<Type, BinaryFunction>::get()),
422 communicator);
423 return lvalue_data;
424 }
425
427 template<class BinaryFunction, class TIN, class TOUT = TIN>
428 MPIFuture<TOUT, TIN> iallreduce(TIN&& data_in, TOUT&& data_out) const {
429 MPIFuture<TOUT, TIN> future(std::forward<TOUT>(data_out), std::forward<TIN>(data_in));
430 auto mpidata_in = future.get_send_mpidata();
431 auto mpidata_out = future.get_mpidata();
432 assert(mpidata_out.size() == mpidata_in.size());
433 assert(mpidata_out.type() == mpidata_in.type());
434 MPI_Iallreduce(mpidata_in.ptr(), mpidata_out.ptr(),
435 mpidata_out.size(), mpidata_out.type(),
436 (Generic_MPI_Op<TIN, BinaryFunction>::get()),
437 communicator, &future.req_);
438 return future;
439 }
440
442 template<class BinaryFunction, class T>
443 MPIFuture<T> iallreduce(T&& data) const{
444 MPIFuture<T> future(std::forward<T>(data));
445 auto mpidata = future.get_mpidata();
446 MPI_Iallreduce(MPI_IN_PLACE, mpidata.ptr(),
447 mpidata.size(), mpidata.type(),
448 (Generic_MPI_Op<T, BinaryFunction>::get()),
449 communicator, &future.req_);
450 return future;
451 }
452
454 template<typename BinaryFunction, typename Type>
455 int allreduce(const Type* in, Type* out, int len) const
456 {
457 return MPI_Allreduce(const_cast<Type*>(in), out, len, MPITraits<Type>::getType(),
458 (Generic_MPI_Op<Type, BinaryFunction>::get()),communicator);
459 }
460
461 private:
462 MPI_Comm communicator;
463 int me;
464 int procs;
465 };
466} // namespace dune
467
468#endif // HAVE_MPI
469
470#endif
helper classes to provide unique types for standard functions
int max(T *inout, int len) const
Compute the maximum of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:259
int allgatherv(const T *in, int sendDataLen, T *out, int *recvDataLen, int *displ) const
Gathers data of variable length from all tasks and distribute it to all.
Definition: mpicommunication.hh:398
T max(const T &in) const
Compute the maximum of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:250
MPIFuture< T > ibroadcast(T &&data, int root) const
Distribute an array from the process with rank root to all other processes nonblocking.
Definition: mpicommunication.hh:288
MPIFuture< void > ibarrier() const
Nonblocking barrier.
Definition: mpicommunication.hh:271
MPIFuture< const T > isend(const T &&data, int dest_rank, int tag) const
Sends the data to the dest_rank nonblocking.
Definition: mpicommunication.hh:150
T recv(T &&data, int source_rank, int tag, MPI_Status *status=MPI_STATUS_IGNORE) const
Receives the data from the source_rank.
Definition: mpicommunication.hh:161
int barrier() const
Wait until all processes have arrived at this point in the program.
Definition: mpicommunication.hh:265
int rank() const
Return rank, is between 0 and size()-1.
Definition: mpicommunication.hh:128
int scatterv(const T *sendData, int *sendDataLen, int *displ, T *recvData, int recvDataLen, int root) const
Scatter arrays of variable length from a root to all other tasks.
Definition: mpicommunication.hh:359
MPIFuture< TOUT, TIN > iallgather(TIN &&data_in, TOUT &&data_out) const
Gathers data from all tasks and distribute it to all nonblocking.
Definition: mpicommunication.hh:383
int sum(T *inout, int len) const
Compute the sum of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:210
int broadcast(T *inout, int len, int root) const
Distribute an array from the process with rank root to all other processes.
Definition: mpicommunication.hh:281
MPIFuture< T > iallreduce(T &&data) const
Compute something over all processes nonblocking.
Definition: mpicommunication.hh:443
T sum(const T &in) const
Compute the sum of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:201
int allreduce(const Type *in, Type *out, int len) const
Definition: mpicommunication.hh:455
MPIFuture< TOUT, TIN > iallreduce(TIN &&data_in, TOUT &&data_out) const
Compute something over all processes nonblocking.
Definition: mpicommunication.hh:428
int size() const
Number of processes in set, is greater than 0.
Definition: mpicommunication.hh:134
int gather(const T *in, T *out, int len, int root) const
Gather arrays on root task.
Definition: mpicommunication.hh:303
int allreduce(Type *inout, int len) const
Compute something over all processes for each component of an array and return the result in every pr...
Definition: mpicommunication.hh:407
int scatter(const T *sendData, T *recvData, int len, int root) const
Scatter array from a root to all other task.
Definition: mpicommunication.hh:336
MPIFuture< T > irecv(T &&data, int source_rank, int tag) const
Receives the data from the source_rank nonblocking.
Definition: mpicommunication.hh:172
int prod(T *inout, int len) const
Compute the product of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:226
MPIFuture< TOUT, TIN > igather(TIN &&data_in, TOUT &&data_out, int root) const
Gather arrays on root task nonblocking.
Definition: mpicommunication.hh:312
T min(const T &in) const
Compute the minimum of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:233
Communication(const MPI_Comm &c=MPI_COMM_WORLD)
Instantiation using a MPI communicator.
Definition: mpicommunication.hh:111
MPIFuture< TOUT, TIN > iscatter(TIN &&data_in, TOUT &&data_out, int root) const
Scatter array from a root to all other task nonblocking.
Definition: mpicommunication.hh:345
int gatherv(const T *in, int sendDataLen, T *out, int *recvDataLen, int *displ, int root) const
Gather arrays of variable size on root task.
Definition: mpicommunication.hh:326
int min(T *inout, int len) const
Compute the minimum of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:242
int allgather(const T *sbuf, int count, T1 *rbuf) const
Gathers data from all tasks and distribute it to all.
Definition: mpicommunication.hh:374
int send(const T &data, int dest_rank, int tag) const
Sends the data to the dest_rank.
Definition: mpicommunication.hh:141
T prod(const T &in) const
Compute the product of the argument over all processes and return the result in every process....
Definition: mpicommunication.hh:217
Collective communication interface and sequential default implementation.
Definition: communication.hh:100
int allreduce(Type *inout, int len) const
Compute something over all processes for each component of an array and return the result in every pr...
Definition: communication.hh:486
int size() const
Number of processes in set, is greater than 0.
Definition: communication.hh:126
Provides a future-like object for MPI communication. It contains the object that will be received and...
Definition: mpifuture.hh:85
Default exception if an error in the parallel communication of the program occurred.
Definition: exceptions.hh:287
A few common exception classes.
Implements an utility class that provides collective communication methods for sequential programs.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:218
Interface class to translate objects to a MPI_Datatype, void* and size used for MPI calls.
Traits classes for mapping types onto MPI_Datatype.
Dune namespace.
Definition: alignedallocator.hh:13
A traits class describing the mapping of types onto MPI_Datatypes.
Definition: mpitraits.hh:41
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)