Dune Core Modules (2.9.0)

fmatrix.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_FMATRIX_HH
6#define DUNE_FMATRIX_HH
7
8#include <cmath>
9#include <cstddef>
10#include <iostream>
11#include <algorithm>
12#include <initializer_list>
13
21#include <dune/common/matrixconcepts.hh>
22
23namespace Dune
24{
25
26 namespace Impl
27 {
28
29 template<class M>
30 class ColumnVectorView
31 {
32 public:
33
34 using value_type = typename M::value_type;
35 using size_type = typename M::size_type;
36
37 constexpr ColumnVectorView(M& matrix, size_type col) :
38 matrix_(matrix),
39 col_(col)
40 {}
41
42 constexpr size_type N () const {
43 return matrix_.N();
44 }
45
46 template<class M_ = M,
47 std::enable_if_t<std::is_same_v<M_,M> and not std::is_const_v<M_>, int> = 0>
48 constexpr value_type& operator[] (size_type row) {
49 return matrix_[row][col_];
50 }
51
52 constexpr const value_type& operator[] (size_type row) const {
53 return matrix_[row][col_];
54 }
55
56 protected:
57 M& matrix_;
58 const size_type col_;
59 };
60
61 }
62
63 template<typename M>
64 struct FieldTraits< Impl::ColumnVectorView<M> >
65 {
66 using field_type = typename FieldTraits<M>::field_type;
67 using real_type = typename FieldTraits<M>::real_type;
68 };
69
81 template< class K, int ROWS, int COLS = ROWS > class FieldMatrix;
82
83
84 template< class K, int ROWS, int COLS >
85 struct DenseMatVecTraits< FieldMatrix<K,ROWS,COLS> >
86 {
87 typedef FieldMatrix<K,ROWS,COLS> derived_type;
88
89 // each row is implemented by a field vector
90 typedef FieldVector<K,COLS> row_type;
91
92 typedef row_type &row_reference;
93 typedef const row_type &const_row_reference;
94
95 typedef std::array<row_type,ROWS> container_type;
96 typedef K value_type;
97 typedef typename container_type::size_type size_type;
98 };
99
100 template< class K, int ROWS, int COLS >
101 struct FieldTraits< FieldMatrix<K,ROWS,COLS> >
102 {
103 typedef typename FieldTraits<K>::field_type field_type;
104 typedef typename FieldTraits<K>::real_type real_type;
105 };
106
115 template<class K, int ROWS, int COLS>
116 class FieldMatrix : public DenseMatrix< FieldMatrix<K,ROWS,COLS> >
117 {
118 std::array< FieldVector<K,COLS>, ROWS > _data;
120 public:
121
123 constexpr static int rows = ROWS;
125 constexpr static int cols = COLS;
126
127 typedef typename Base::size_type size_type;
128 typedef typename Base::row_type row_type;
129
130 typedef typename Base::row_reference row_reference;
132
133 //===== constructors
136 constexpr FieldMatrix() = default;
137
140 FieldMatrix(std::initializer_list<Dune::FieldVector<K, cols> > const &l) {
141 assert(l.size() == rows); // Actually, this is not needed any more!
142 std::copy_n(l.begin(), std::min(static_cast<std::size_t>(ROWS),
143 l.size()),
144 _data.begin());
145 }
146
147 template <class T,
148 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
149 FieldMatrix(T const& rhs)
150 {
151 *this = rhs;
152 }
153
154 using Base::operator=;
155
158
160 template<typename T>
162 {
163 _data = x._data;
164 return *this;
165 }
166
168 template <typename T, int rows, int cols>
170
173 {
175 for( int i = 0; i < ROWS; ++i )
176 for( int j = 0; j < COLS; ++j )
177 AT[j][i] = (*this)[i][j];
178 return AT;
179 }
180
182 template <class OtherScalar>
183 friend auto operator+ ( const FieldMatrix& matrixA,
185 {
187
188 for (size_type i = 0; i < ROWS; ++i)
189 for (size_type j = 0; j < COLS; ++j)
190 result[i][j] = matrixA[i][j] + matrixB[i][j];
191
192 return result;
193 }
194
196 template <class OtherScalar>
197 friend auto operator- ( const FieldMatrix& matrixA,
199 {
201
202 for (size_type i = 0; i < ROWS; ++i)
203 for (size_type j = 0; j < COLS; ++j)
204 result[i][j] = matrixA[i][j] - matrixB[i][j];
205
206 return result;
207 }
208
210 template <class Scalar,
211 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
212 friend auto operator* ( const FieldMatrix& matrix, Scalar scalar)
213 {
215
216 for (size_type i = 0; i < ROWS; ++i)
217 for (size_type j = 0; j < COLS; ++j)
218 result[i][j] = matrix[i][j] * scalar;
219
220 return result;
221 }
222
224 template <class Scalar,
225 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
226 friend auto operator* ( Scalar scalar, const FieldMatrix& matrix)
227 {
229
230 for (size_type i = 0; i < ROWS; ++i)
231 for (size_type j = 0; j < COLS; ++j)
232 result[i][j] = scalar * matrix[i][j];
233
234 return result;
235 }
236
238 template <class Scalar,
239 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
240 friend auto operator/ ( const FieldMatrix& matrix, Scalar scalar)
241 {
243
244 for (size_type i = 0; i < ROWS; ++i)
245 for (size_type j = 0; j < COLS; ++j)
246 result[i][j] = matrix[i][j] / scalar;
247
248 return result;
249 }
250
253 template <class OtherScalar, int otherCols>
254 friend auto operator* ( const FieldMatrix& matrixA,
256 {
258
259 for (size_type i = 0; i < matrixA.mat_rows(); ++i)
260 for (size_type j = 0; j < matrixB.mat_cols(); ++j)
261 {
262 result[i][j] = 0;
263 for (size_type k = 0; k < matrixA.mat_cols(); ++k)
264 result[i][j] += matrixA[i][k] * matrixB[k][j];
265 }
266
267 return result;
268 }
269
276 template <class OtherMatrix, std::enable_if_t<
277 Impl::IsStaticSizeMatrix_v<OtherMatrix>
278 and not Impl::IsFieldMatrix_v<OtherMatrix>
279 , int> = 0>
280 friend auto operator* ( const FieldMatrix& matrixA,
281 const OtherMatrix& matrixB)
282 {
283 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
285 for (std::size_t j=0; j<rows; ++j)
286 matrixB.mtv(matrixA[j], result[j]);
287 return result;
288 }
289
296 template <class OtherMatrix, std::enable_if_t<
297 Impl::IsStaticSizeMatrix_v<OtherMatrix>
298 and not Impl::IsFieldMatrix_v<OtherMatrix>
299 , int> = 0>
300 friend auto operator* ( const OtherMatrix& matrixA,
301 const FieldMatrix& matrixB)
302 {
303 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
305 for (std::size_t j=0; j<cols; ++j)
306 {
307 auto B_j = Impl::ColumnVectorView(matrixB, j);
308 auto result_j = Impl::ColumnVectorView(result, j);
309 matrixA.mv(B_j, result_j);
310 }
311 return result;
312 }
313
315 template<int l>
317 {
319
320 for (size_type i=0; i<l; i++) {
321 for (size_type j=0; j<cols; j++) {
322 C[i][j] = 0;
323 for (size_type k=0; k<rows; k++)
324 C[i][j] += M[i][k]*(*this)[k][j];
325 }
326 }
327 return C;
328 }
329
331
333 template <int r, int c>
335 {
336 static_assert(r == c, "Cannot rightmultiply with non-square matrix");
337 static_assert(r == cols, "Size mismatch");
339
340 for (size_type i=0; i<rows; i++)
341 for (size_type j=0; j<cols; j++) {
342 (*this)[i][j] = 0;
343 for (size_type k=0; k<cols; k++)
344 (*this)[i][j] += C[i][k]*M[k][j];
345 }
346 return *this;
347 }
348
350 template<int l>
352 {
354
355 for (size_type i=0; i<rows; i++) {
356 for (size_type j=0; j<l; j++) {
357 C[i][j] = 0;
358 for (size_type k=0; k<cols; k++)
359 C[i][j] += (*this)[i][k]*M[k][j];
360 }
361 }
362 return C;
363 }
364
365 // make this thing a matrix
366 static constexpr size_type mat_rows() { return ROWS; }
367 static constexpr size_type mat_cols() { return COLS; }
368
369 row_reference mat_access ( size_type i )
370 {
371 DUNE_ASSERT_BOUNDS(i < ROWS);
372 return _data[i];
373 }
374
375 const_row_reference mat_access ( size_type i ) const
376 {
377 DUNE_ASSERT_BOUNDS(i < ROWS);
378 return _data[i];
379 }
380 };
381
382#ifndef DOXYGEN // hide specialization
385 template<class K>
386 class FieldMatrix<K,1,1> : public DenseMatrix< FieldMatrix<K,1,1> >
387 {
388 FieldVector<K,1> _data;
389 typedef DenseMatrix< FieldMatrix<K,1,1> > Base;
390 public:
391 // standard constructor and everything is sufficient ...
392
393 //===== type definitions and constants
394
396 typedef typename Base::size_type size_type;
397
400 constexpr static int blocklevel = 1;
401
402 typedef typename Base::row_type row_type;
403
404 typedef typename Base::row_reference row_reference;
405 typedef typename Base::const_row_reference const_row_reference;
406
409 constexpr static int rows = 1;
412 constexpr static int cols = 1;
413
414 //===== constructors
417 constexpr FieldMatrix() = default;
418
421 FieldMatrix(std::initializer_list<Dune::FieldVector<K, 1>> const &l)
422 {
423 std::copy_n(l.begin(), std::min(static_cast< std::size_t >( 1 ), l.size()), &_data);
424 }
425
426 template <class T,
427 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
428 FieldMatrix(T const& rhs)
429 {
430 *this = rhs;
431 }
432
433 using Base::operator=;
434
436 FieldMatrix<K, 1, 1> transposed() const
437 {
438 return *this;
439 }
440
442 template <class OtherScalar>
443 friend auto operator+ ( const FieldMatrix& matrixA,
444 const FieldMatrix<OtherScalar,1,1>& matrixB)
445 {
446 return FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,1>{matrixA[0][0] + matrixB[0][0]};
447 }
448
450 template <class Scalar,
451 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
452 friend auto operator+ ( const FieldMatrix& matrix,
453 const Scalar& scalar)
454 {
455 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1>{matrix[0][0] + scalar};
456 }
457
459 template <class Scalar,
460 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
461 friend auto operator+ ( const Scalar& scalar,
462 const FieldMatrix& matrix)
463 {
464 return FieldMatrix<typename PromotionTraits<Scalar,K>::PromotedType,1,1>{scalar + matrix[0][0]};
465 }
466
468 template <class OtherScalar>
469 friend auto operator- ( const FieldMatrix& matrixA,
470 const FieldMatrix<OtherScalar,1,1>& matrixB)
471 {
472 return FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,1>{matrixA[0][0] - matrixB[0][0]};
473 }
474
476 template <class Scalar,
477 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
478 friend auto operator- ( const FieldMatrix& matrix,
479 const Scalar& scalar)
480 {
481 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1>{matrix[0][0] - scalar};
482 }
483
485 template <class Scalar,
486 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
487 friend auto operator- ( const Scalar& scalar,
488 const FieldMatrix& matrix)
489 {
490 return FieldMatrix<typename PromotionTraits<Scalar,K>::PromotedType,1,1>{scalar - matrix[0][0]};
491 }
492
494 template <class Scalar,
495 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
496 friend auto operator* ( const FieldMatrix& matrix, Scalar scalar)
497 {
498 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {matrix[0][0] * scalar};
499 }
500
502 template <class Scalar,
503 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
504 friend auto operator* ( Scalar scalar, const FieldMatrix& matrix)
505 {
506 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {scalar * matrix[0][0]};
507 }
508
510 template <class Scalar,
511 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
512 friend auto operator/ ( const FieldMatrix& matrix, Scalar scalar)
513 {
514 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {matrix[0][0] / scalar};
515 }
516
517 //===== solve
518
521 template <class OtherScalar, int otherCols>
522 friend auto operator* ( const FieldMatrix& matrixA,
523 const FieldMatrix<OtherScalar, 1, otherCols>& matrixB)
524 {
525 FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,otherCols> result;
526
527 for (size_type j = 0; j < matrixB.mat_cols(); ++j)
528 result[0][j] = matrixA[0][0] * matrixB[0][j];
529
530 return result;
531 }
532
539 template <class OtherMatrix, std::enable_if_t<
540 Impl::IsStaticSizeMatrix_v<OtherMatrix>
541 and not Impl::IsFieldMatrix_v<OtherMatrix>
542 and (OtherMatrix::rows==1)
543 , int> = 0>
544 friend auto operator* ( const FieldMatrix& matrixA,
545 const OtherMatrix& matrixB)
546 {
547 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
549 for (std::size_t j=0; j<rows; ++j)
550 matrixB.mtv(matrixA[j], result[j]);
551 return result;
552 }
553
560 template <class OtherMatrix, std::enable_if_t<
561 Impl::IsStaticSizeMatrix_v<OtherMatrix>
562 and not Impl::IsFieldMatrix_v<OtherMatrix>
563 and (OtherMatrix::cols==1)
564 , int> = 0>
565 friend auto operator* ( const OtherMatrix& matrixA,
566 const FieldMatrix& matrixB)
567 {
568 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
570 for (std::size_t j=0; j<cols; ++j)
571 {
572 auto B_j = Impl::ColumnVectorView(matrixB, j);
573 auto result_j = Impl::ColumnVectorView(result, j);
574 matrixA.mv(B_j, result_j);
575 }
576 return result;
577 }
578
580 template<int l>
581 FieldMatrix<K,l,1> leftmultiplyany (const FieldMatrix<K,l,1>& M) const
582 {
583 FieldMatrix<K,l,1> C;
584 for (size_type j=0; j<l; j++)
585 C[j][0] = M[j][0]*(*this)[0][0];
586 return C;
587 }
588
591 {
592 _data[0] *= M[0][0];
593 return *this;
594 }
595
597 template<int l>
598 FieldMatrix<K,1,l> rightmultiplyany (const FieldMatrix<K,1,l>& M) const
599 {
600 FieldMatrix<K,1,l> C;
601
602 for (size_type j=0; j<l; j++)
603 C[0][j] = M[0][j]*_data[0];
604 return C;
605 }
606
607 // make this thing a matrix
608 static constexpr size_type mat_rows() { return 1; }
609 static constexpr size_type mat_cols() { return 1; }
610
611 row_reference mat_access ([[maybe_unused]] size_type i)
612 {
613 DUNE_ASSERT_BOUNDS(i == 0);
614 return _data;
615 }
616
617 const_row_reference mat_access ([[maybe_unused]] size_type i) const
618 {
619 DUNE_ASSERT_BOUNDS(i == 0);
620 return _data;
621 }
622
624 FieldMatrix& operator+= (const K& k)
625 {
626 _data[0] += k;
627 return (*this);
628 }
629
631 FieldMatrix& operator-= (const K& k)
632 {
633 _data[0] -= k;
634 return (*this);
635 }
636
638 FieldMatrix& operator*= (const K& k)
639 {
640 _data[0] *= k;
641 return (*this);
642 }
643
645 FieldMatrix& operator/= (const K& k)
646 {
647 _data[0] /= k;
648 return (*this);
649 }
650
651 //===== conversion operator
652
653 operator const K& () const { return _data[0]; }
654
655 };
656
658 template<typename K>
659 std::ostream& operator<< (std::ostream& s, const FieldMatrix<K,1,1>& a)
660 {
661 s << a[0][0];
662 return s;
663 }
664
665#endif // DOXYGEN
666
667 namespace FMatrixHelp {
668
670 template <typename K>
671 static inline K invertMatrix (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
672 {
673 using real_type = typename FieldTraits<K>::real_type;
674 inverse[0][0] = real_type(1.0)/matrix[0][0];
675 return matrix[0][0];
676 }
677
679 template <typename K>
680 static inline K invertMatrix_retTransposed (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
681 {
682 return invertMatrix(matrix,inverse);
683 }
684
685
687 template <typename K>
688 static inline K invertMatrix (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
689 {
690 using real_type = typename FieldTraits<K>::real_type;
691 // code generated by maple
692 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
693 K det_1 = real_type(1.0)/det;
694 inverse[0][0] = matrix[1][1] * det_1;
695 inverse[0][1] = - matrix[0][1] * det_1;
696 inverse[1][0] = - matrix[1][0] * det_1;
697 inverse[1][1] = matrix[0][0] * det_1;
698 return det;
699 }
700
703 template <typename K>
704 static inline K invertMatrix_retTransposed (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
705 {
706 using real_type = typename FieldTraits<K>::real_type;
707 // code generated by maple
708 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
709 K det_1 = real_type(1.0)/det;
710 inverse[0][0] = matrix[1][1] * det_1;
711 inverse[1][0] = - matrix[0][1] * det_1;
712 inverse[0][1] = - matrix[1][0] * det_1;
713 inverse[1][1] = matrix[0][0] * det_1;
714 return det;
715 }
716
718 template <typename K>
719 static inline K invertMatrix (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
720 {
721 using real_type = typename FieldTraits<K>::real_type;
722 // code generated by maple
723 K t4 = matrix[0][0] * matrix[1][1];
724 K t6 = matrix[0][0] * matrix[1][2];
725 K t8 = matrix[0][1] * matrix[1][0];
726 K t10 = matrix[0][2] * matrix[1][0];
727 K t12 = matrix[0][1] * matrix[2][0];
728 K t14 = matrix[0][2] * matrix[2][0];
729
730 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
731 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
732 K t17 = real_type(1.0)/det;
733
734 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
735 inverse[0][1] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
736 inverse[0][2] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
737 inverse[1][0] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
738 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
739 inverse[1][2] = -(t6-t10) * t17;
740 inverse[2][0] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
741 inverse[2][1] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
742 inverse[2][2] = (t4-t8) * t17;
743
744 return det;
745 }
746
748 template <typename K>
749 static inline K invertMatrix_retTransposed (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
750 {
751 using real_type = typename FieldTraits<K>::real_type;
752 // code generated by maple
753 K t4 = matrix[0][0] * matrix[1][1];
754 K t6 = matrix[0][0] * matrix[1][2];
755 K t8 = matrix[0][1] * matrix[1][0];
756 K t10 = matrix[0][2] * matrix[1][0];
757 K t12 = matrix[0][1] * matrix[2][0];
758 K t14 = matrix[0][2] * matrix[2][0];
759
760 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
761 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
762 K t17 = real_type(1.0)/det;
763
764 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
765 inverse[1][0] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
766 inverse[2][0] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
767 inverse[0][1] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
768 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
769 inverse[2][1] = -(t6-t10) * t17;
770 inverse[0][2] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
771 inverse[1][2] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
772 inverse[2][2] = (t4-t8) * t17;
773
774 return det;
775 }
776
778 template< class K, int m, int n, int p >
779 static inline void multMatrix ( const FieldMatrix< K, m, n > &A,
780 const FieldMatrix< K, n, p > &B,
782 {
783 typedef typename FieldMatrix< K, m, p > :: size_type size_type;
784
785 for( size_type i = 0; i < m; ++i )
786 {
787 for( size_type j = 0; j < p; ++j )
788 {
789 ret[ i ][ j ] = K( 0 );
790 for( size_type k = 0; k < n; ++k )
791 ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
792 }
793 }
794 }
795
797 template <typename K, int rows, int cols>
799 {
800 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
801
802 for(size_type i=0; i<cols; i++)
803 for(size_type j=0; j<cols; j++)
804 {
805 ret[i][j]=0.0;
806 for(size_type k=0; k<rows; k++)
807 ret[i][j]+=matrix[k][i]*matrix[k][j];
808 }
809 }
810
811 using Dune::DenseMatrixHelp::multAssign;
812
814 template <typename K, int rows, int cols>
816 {
817 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
818
819 for(size_type i=0; i<cols; ++i)
820 {
821 ret[i] = 0.0;
822 for(size_type j=0; j<rows; ++j)
823 ret[i] += matrix[j][i]*x[j];
824 }
825 }
826
828 template <typename K, int rows, int cols>
830 {
832 multAssign(matrix,x,ret);
833 return ret;
834 }
835
837 template <typename K, int rows, int cols>
839 {
841 multAssignTransposed( matrix, x, ret );
842 return ret;
843 }
844
845 } // end namespace FMatrixHelp
846
849} // end namespace
850
851#include "fmatrixev.hh"
852#endif
Macro for wrapping boundary checks.
A dense n x m matrix.
Definition: densematrix.hh:140
derived_type operator-() const
Matrix negation.
Definition: densematrix.hh:298
void mtv(const X &x, Y &y) const
y = A^T x
Definition: densematrix.hh:387
constexpr size_type M() const
number of columns
Definition: densematrix.hh:703
FieldMatrix< K, ROWS, COLS > & rightmultiply(const DenseMatrix< M2 > &M)
Multiplies M from the right to this matrix.
Definition: densematrix.hh:645
derived_type & operator/=(const field_type &k)
vector space division by scalar
Definition: densematrix.hh:329
derived_type & operator*=(const field_type &k)
vector space multiplication with scalar
Definition: densematrix.hh:321
derived_type & operator-=(const DenseMatrix< Other > &x)
vector space subtraction
Definition: densematrix.hh:312
static constexpr int blocklevel
The number of block levels we contain. This is the leaf, that is, 1.
Definition: densematrix.hh:178
Traits::row_type row_type
The type used to represent a row (must fulfill the Dune::DenseVector interface)
Definition: densematrix.hh:169
Traits::size_type size_type
The type used for the index access and size operation.
Definition: densematrix.hh:166
Traits::const_row_reference const_row_reference
The type used to represent a reference to a constant row (usually const row_type &)
Definition: densematrix.hh:175
Traits::row_reference row_reference
The type used to represent a reference to a row (usually row_type &)
Definition: densematrix.hh:172
derived_type & operator+=(const DenseMatrix< Other > &x)
vector space addition
Definition: densematrix.hh:289
A dense n x m matrix.
Definition: fmatrix.hh:117
constexpr FieldMatrix()=default
Default constructor.
FieldMatrix & operator=(const FieldMatrix< T, ROWS, COLS > &x)
copy assignment from FieldMatrix over a different field
Definition: fmatrix.hh:161
FieldMatrix< K, rows, l > rightmultiplyany(const FieldMatrix< K, cols, l > &M) const
Multiplies M from the right to this matrix, this matrix is not modified.
Definition: fmatrix.hh:351
FieldMatrix< K, l, cols > leftmultiplyany(const FieldMatrix< K, l, rows > &M) const
Multiplies M from the left to this matrix, this matrix is not modified.
Definition: fmatrix.hh:316
FieldMatrix & rightmultiply(const FieldMatrix< K, r, c > &M)
Multiplies M from the right to this matrix.
Definition: fmatrix.hh:334
friend auto operator*(const FieldMatrix &matrix, Scalar scalar)
vector space multiplication with scalar
Definition: fmatrix.hh:212
FieldMatrix & operator=(FieldMatrix< T, rows, cols > const &)=delete
no copy assignment from FieldMatrix of different size
static constexpr int rows
The number of rows.
Definition: fmatrix.hh:123
FieldMatrix< K, COLS, ROWS > transposed() const
Return transposed of the matrix as FieldMatrix.
Definition: fmatrix.hh:172
FieldMatrix(std::initializer_list< Dune::FieldVector< K, cols > > const &l)
Constructor initializing the matrix from a list of vector.
Definition: fmatrix.hh:140
static constexpr int cols
The number of columns.
Definition: fmatrix.hh:125
friend auto operator/(const FieldMatrix &matrix, Scalar scalar)
vector space division by scalar
Definition: fmatrix.hh:240
friend auto operator+(const FieldMatrix &matrixA, const FieldMatrix< OtherScalar, ROWS, COLS > &matrixB)
vector space addition – two-argument version
Definition: fmatrix.hh:183
FieldMatrix & operator=(const FieldMatrix &)=default
copy assignment operator
Implements a matrix constructed from a given type representing a field and a compile-time given numbe...
A few common exception classes.
Traits for type conversions and type information.
static FieldVector< K, cols > multTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x)
calculates ret = matrix^T * x
Definition: fmatrix.hh:838
static K invertMatrix_retTransposed(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:680
static void multMatrix(const FieldMatrix< K, m, n > &A, const FieldMatrix< K, n, p > &B, FieldMatrix< K, m, p > &ret)
calculates ret = A * B
Definition: fmatrix.hh:779
static K invertMatrix(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:671
static FieldVector< K, rows > mult(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, cols > &x)
calculates ret = matrix * x
Definition: fmatrix.hh:829
static void multTransposedMatrix(const FieldMatrix< K, rows, cols > &matrix, FieldMatrix< K, cols, cols > &ret)
calculates ret= A_t*A
Definition: fmatrix.hh:798
static void multAssignTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x, FieldVector< K, cols > &ret)
calculates ret = matrix^T * x
Definition: fmatrix.hh:815
Eigenvalue computations for the FieldMatrix class.
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_ASSERT_BOUNDS(cond)
If DUNE_CHECK_BOUNDS is defined: check if condition cond holds; otherwise, do nothing.
Definition: boundschecking.hh:30
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Various precision settings for calculations with FieldMatrix and FieldVector.
Compute type of the result of an arithmetic operation involving two different number types.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)