Dune Core Modules (2.9.0)

equidistantpoints.hh
1// SPDX-FileCopyrightText: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
2// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
3#ifndef DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH
4#define DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH
5
6#include <cstddef>
7
8#include <algorithm>
9#include <vector>
10
11#include <dune/geometry/referenceelements.hh>
12#include <dune/geometry/type.hh>
13
14#include <dune/localfunctions/lagrange/emptypoints.hh>
15#include <dune/localfunctions/utility/field.hh>
16
17namespace Dune
18{
19
20 // numLagrangePoints
21 // -----------------
22
23 inline std::size_t numLagrangePoints ( const GeometryType& gt, std::size_t order )
24 {
25 const int dim = gt.dim();
26 if( dim > 0 )
27 {
28 const GeometryType baseGeometryType = Impl::getBase( gt );
29 if( gt.isConical() )
30 {
31 std::size_t size = 0;
32 for( unsigned int o = 0; o <= order; ++o )
33 size += numLagrangePoints( baseGeometryType, o );
34 return size;
35 }
36 else
37 return numLagrangePoints( baseGeometryType, order ) * (order+1);
38 }
39 else
40 return 1;
41 }
42
43 [[deprecated("Use numLagrangePoints(const GeometryType& gt, std::size_t order ) instead.")]]
44 inline std::size_t numLagrangePoints ( unsigned int topologyId, unsigned int dim, std::size_t order )
45 {
46 return numLagrangePoints ( GeometryType(topologyId, dim), order);
47 }
48
49
50
51 // equidistantLagrangePoints
52 // -------------------------
53
54 template< class ct, unsigned int cdim >
55 inline static unsigned int equidistantLagrangePoints ( const GeometryType& gt, unsigned int codim, std::size_t order, unsigned int *count, LagrangePoint< ct, cdim > *points )
56 {
57 const unsigned int dim = gt.dim();
58 assert( (0 <= codim) && (codim <= dim) && (dim <= cdim) );
59
60 if( dim > 0 )
61 {
62 const GeometryType baseGeometryType = Impl::getBase( gt );
63 const unsigned int numBaseN = (codim < dim ? Geo::Impl::size( baseGeometryType.id(), baseGeometryType.dim(), codim ) : 0);
64 const unsigned int numBaseM = (codim > 0 ? Geo::Impl::size( baseGeometryType.id(), baseGeometryType.dim(), codim-1 ) : 0);
65
66 if( gt.isPrismatic() )
67 {
68 unsigned int size = 0;
69 if( codim < dim )
70 {
71 for( unsigned int i = 1; i < order; ++i )
72 {
73 const unsigned int n = equidistantLagrangePoints( baseGeometryType, codim, order, count, points );
74 for( unsigned int j = 0; j < n; ++j )
75 {
76 LocalKey &key = points->localKey_;
77 key = LocalKey( key.subEntity(), codim, key.index() );
78 points->point_[ dim-1 ] = ct( i ) / ct( order );
79 ++points;
80 }
81 size += n;
82 }
83 }
84
85 if( codim > 0 )
86 {
87 const unsigned int n = equidistantLagrangePoints( baseGeometryType, codim-1, order, count+numBaseN, points );
88 for( unsigned int j = 0; j < n; ++j )
89 {
90 LocalKey &key = points[ j ].localKey_;
91 key = LocalKey( key.subEntity() + numBaseN, codim, key.index() );
92
93 points[ j + n ].point_ = points[ j ].point_;
94 points[ j + n ].point_[ dim-1 ] = ct( 1 );
95 points[ j + n ].localKey_ = LocalKey( key.subEntity() + numBaseM, codim, key.index() );
96 ++count[ key.subEntity() + numBaseM ];
97 }
98 size += 2*n;
99 }
100
101 return size;
102 }
103 else
104 {
105 unsigned int size = (codim > 0 ? equidistantLagrangePoints( baseGeometryType, codim-1, order, count, points ) : 0);
106 LagrangePoint< ct, cdim > *const end = points + size;
107 for( ; points != end; ++points )
108 points->localKey_ = LocalKey( points->localKey_.subEntity(), codim, points->localKey_.index() );
109
110 if( codim < dim )
111 {
112 for( unsigned int i = order-1; i > 0; --i )
113 {
114 const unsigned int n = equidistantLagrangePoints( baseGeometryType, codim, i, count+numBaseM, points );
115 LagrangePoint< ct, cdim > *const end = points + n;
116 for( ; points != end; ++points )
117 {
118 points->localKey_ = LocalKey( points->localKey_.subEntity()+numBaseM, codim, points->localKey_.index() );
119 for( unsigned int j = 0; j < dim-1; ++j )
120 points->point_[ j ] *= ct( i ) / ct( order );
121 points->point_[ dim-1 ] = ct( order - i ) / ct( order );
122 }
123 size += n;
124 }
125 }
126 else
127 {
128 points->localKey_ = LocalKey( numBaseM, dim, count[ numBaseM ]++ );
129 points->point_ = 0;
130 points->point_[ dim-1 ] = ct( 1 );
131 ++size;
132 }
133
134 return size;
135 }
136 }
137 else
138 {
139 points->localKey_ = LocalKey( 0, 0, count[ 0 ]++ );
140 points->point_ = 0;
141 return 1;
142 }
143 }
144
145 template< class ct, unsigned int cdim >
146 [[deprecated("Use equidistantLagrangePoints ( GeometryType gt, ... ) instead.")]]
147 inline static unsigned int equidistantLagrangePoints ( unsigned int topologyId, unsigned int dim, unsigned int codim, std::size_t order, unsigned int *count, LagrangePoint< ct, cdim > *points )
148 {
149 return equidistantLagrangePoints ( GeometryType(topologyId, dim), codim, order, *count, *points );
150 }
151
152
153
154 // EquidistantPointSet
155 // -------------------
156
157 template< class F, unsigned int dim >
158 class EquidistantPointSet
159 : public EmptyPointSet< F, dim >
160 {
161 typedef EmptyPointSet< F, dim > Base;
162
163 public:
164 static const unsigned int dimension = dim;
165
166 using Base::order;
167
168 EquidistantPointSet ( std::size_t order ) : Base( order ) {}
169
170 void build ( GeometryType gt )
171 {
172 assert( gt.dim() == dimension );
173 points_.resize( numLagrangePoints( gt, order() ) );
174
175 typename Base::LagrangePoint *p = points_.data();
176 std::vector< unsigned int > count;
177 for( unsigned int mydim = 0; mydim <= dimension; ++mydim )
178 {
179 count.resize( Geo::Impl::size( gt.id(), dimension, dimension-mydim ) );
180 std::fill( count.begin(), count.end(), 0u );
181 p += equidistantLagrangePoints( gt, dimension-mydim, order(), count.data(), p );
182 }
183 const auto &refElement = referenceElement<F,dimension>(gt);
184 F weight = refElement.volume()/F(double(points_.size()));
185 for (auto &p : points_)
186 p.weight_ = weight;
187 }
188
189 template< GeometryType::Id geometryId >
190 bool build ()
191 {
192 build( GeometryType( geometryId ) );
193 return true;
194 }
195
196 bool buildCube ()
197 {
198 return build< GeometryTypes::cube(dim) > ();
199 }
200
201 static bool supports ( GeometryType, std::size_t /*order*/ ) { return true; }
202 template< GeometryType::Id geometryId>
203 static bool supports ( std::size_t order ) {
204 return supports( GeometryType( geometryId ), order );
205 }
206
207 private:
208 using Base::points_;
209 };
210
211} // namespace Dune
212
213#endif // #ifndef DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH
GeometryType
Type representing VTK's entity geometry types.
Definition: common.hh:132
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:158
Dune namespace.
Definition: alignedallocator.hh:13
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jul 15, 22:36, 2024)