Dune Core Modules (2.9.0)

bsplinebasis.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_FUNCTIONS_FUNCTIONSPACEBASES_BSPLINEBASIS_HH
4#define DUNE_FUNCTIONS_FUNCTIONSPACEBASES_BSPLINEBASIS_HH
5
10#include <array>
11#include <numeric>
12
15
16#include <dune/localfunctions/common/localbasis.hh>
18#include <dune/localfunctions/common/localkey.hh>
19#include <dune/localfunctions/common/localfiniteelementtraits.hh>
20#include <dune/geometry/type.hh>
21#include <dune/functions/functionspacebases/nodes.hh>
22#include <dune/functions/functionspacebases/defaultglobalbasis.hh>
23
24namespace Dune
25{
26namespace Functions {
27
28// A maze of dependencies between the different parts of this. We need a few forward declarations
29template<typename GV, typename R>
30class BSplineLocalFiniteElement;
31
32template<typename GV>
33class BSplinePreBasis;
34
35
44template<class GV, class R>
46{
47 friend class BSplineLocalFiniteElement<GV,R>;
48
49 typedef typename GV::ctype D;
50 enum {dim = GV::dimension};
51public:
52
56
63 : preBasis_(preBasis),
64 lFE_(lFE)
65 {}
66
71 std::vector<FieldVector<R,1> >& out) const
72 {
73 FieldVector<D,dim> globalIn = offset_;
74 scaling_.umv(in,globalIn);
75
76 preBasis_.evaluateFunction(globalIn, out, lFE_.currentKnotSpan_);
77 }
78
83 std::vector<FieldMatrix<D,1,dim> >& out) const
84 {
85 FieldVector<D,dim> globalIn = offset_;
86 scaling_.umv(in,globalIn);
87
88 preBasis_.evaluateJacobian(globalIn, out, lFE_.currentKnotSpan_);
89
90 for (size_t i=0; i<out.size(); i++)
91 for (int j=0; j<dim; j++)
92 out[i][0][j] *= scaling_[j][j];
93 }
94
96 template<size_t k>
97 inline void evaluate (const typename std::array<int,k>& directions,
98 const typename Traits::DomainType& in,
99 std::vector<typename Traits::RangeType>& out) const
100 {
101 switch(k)
102 {
103 case 0:
104 evaluateFunction(in, out);
105 break;
106 case 1:
107 {
108 FieldVector<D,dim> globalIn = offset_;
109 scaling_.umv(in,globalIn);
110
111 preBasis_.evaluate(directions, globalIn, out, lFE_.currentKnotSpan_);
112
113 for (size_t i=0; i<out.size(); i++)
114 out[i][0] *= scaling_[directions[0]][directions[0]];
115 break;
116 }
117 case 2:
118 {
119 FieldVector<D,dim> globalIn = offset_;
120 scaling_.umv(in,globalIn);
121
122 preBasis_.evaluate(directions, globalIn, out, lFE_.currentKnotSpan_);
123
124 for (size_t i=0; i<out.size(); i++)
125 out[i][0] *= scaling_[directions[0]][directions[0]]*scaling_[directions[1]][directions[1]];
126 break;
127 }
128 default:
129 DUNE_THROW(NotImplemented, "B-Spline derivatives of order " << k << " not implemented yet!");
130 }
131 }
132
140 unsigned int order () const
141 {
142 return *std::max_element(preBasis_.order_.begin(), preBasis_.order_.end());
143 }
144
147 std::size_t size() const
148 {
149 return lFE_.size();
150 }
151
152private:
153 const BSplinePreBasis<GV>& preBasis_;
154
156
157 // Coordinates in a single knot span differ from coordinates on the B-spline patch
158 // by an affine transformation. This transformation is stored in offset_ and scaling_.
159 FieldVector<D,dim> offset_;
160 DiagonalMatrix<D,dim> scaling_;
161};
162
176template<int dim>
178{
179 // Return i as a d-digit number in the (k+1)-nary system
180 std::array<unsigned int,dim> multiindex (unsigned int i) const
181 {
182 std::array<unsigned int,dim> alpha;
183 for (int j=0; j<dim; j++)
184 {
185 alpha[j] = i % sizes_[j];
186 i = i/sizes_[j];
187 }
188 return alpha;
189 }
190
192 void setup1d(std::vector<unsigned int>& subEntity)
193 {
194 if (sizes_[0]==1)
195 {
196 subEntity[0] = 0;
197 return;
198 }
199
200 /* edge and vertex numbering
201 0----0----1
202 */
203 unsigned lastIndex=0;
204 subEntity[lastIndex++] = 0; // corner 0
205 for (unsigned i = 0; i < sizes_[0] - 2; ++i)
206 subEntity[lastIndex++] = 0; // inner dofs of element (0)
207
208 subEntity[lastIndex++] = 1; // corner 1
209
210 assert(size()==lastIndex);
211 }
212
213 void setup2d(std::vector<unsigned int>& subEntity)
214 {
215 unsigned lastIndex=0;
216
217 // LocalKey: entity number , entity codim, dof indices within each entity
218 /* edge and vertex numbering
219 2----3----3
220 | |
221 | |
222 0 1
223 | |
224 | |
225 0----2----1
226 */
227
228 // lower edge (2)
229 subEntity[lastIndex++] = 0; // corner 0
230 for (unsigned i = 0; i < sizes_[0]-2; ++i)
231 subEntity[lastIndex++] = 2; // inner dofs of lower edge (2)
232
233 subEntity[lastIndex++] = 1; // corner 1
234
235 // iterate from bottom to top over inner edge dofs
236 for (unsigned e = 0; e < sizes_[1]-2; ++e)
237 {
238 subEntity[lastIndex++] = 0; // left edge (0)
239 for (unsigned i = 0; i < sizes_[0]-2; ++i)
240 subEntity[lastIndex++] = 0; // face dofs
241 subEntity[lastIndex++] = 1; // right edge (1)
242 }
243
244 // upper edge (3)
245 subEntity[lastIndex++] = 2; // corner 2
246 for (unsigned i = 0; i < sizes_[0]-2; ++i)
247 subEntity[lastIndex++] = 3; // inner dofs of upper edge (3)
248
249 subEntity[lastIndex++] = 3; // corner 3
250
251 assert(size()==lastIndex);
252 }
253
254
255public:
256 void init(const std::array<unsigned,dim>& sizes)
257 {
258 sizes_ = sizes;
259
260 li_.resize(size());
261
262 // Set up array of codimension-per-dof-number
263 std::vector<unsigned int> codim(li_.size());
264
265 for (std::size_t i=0; i<codim.size(); i++)
266 {
267 codim[i] = 0;
268 // Codimension gets increased by 1 for each coordinate direction
269 // where dof is on boundary
270 std::array<unsigned int,dim> mIdx = multiindex(i);
271 for (int j=0; j<dim; j++)
272 if (mIdx[j]==0 or mIdx[j]==sizes[j]-1)
273 codim[i]++;
274 }
275
276 // Set up index vector (the index of the dof in the set of dofs of a given subentity)
277 // Algorithm: the 'index' has the same ordering as the dof number 'i'.
278 // To make it consecutive we interpret 'i' in the (k+1)-adic system, omit all digits
279 // that correspond to axes where the dof is on the element boundary, and transform the
280 // rest to the (k-1)-adic system.
281 std::vector<unsigned int> index(size());
282
283 for (std::size_t i=0; i<index.size(); i++)
284 {
285 index[i] = 0;
286
287 std::array<unsigned int,dim> mIdx = multiindex(i);
288
289 for (int j=dim-1; j>=0; j--)
290 if (mIdx[j]>0 and mIdx[j]<sizes[j]-1)
291 index[i] = (sizes[j]-1)*index[i] + (mIdx[j]-1);
292 }
293
294 // Set up entity and dof numbers for each (supported) dimension separately
295 std::vector<unsigned int> subEntity(li_.size());
296
297 if (subEntity.size() > 0)
298 {
299 if (dim==1) {
300
301 setup1d(subEntity);
302
303 } else if (dim==2 and sizes_[0]>1 and sizes_[1]>1) {
304
305 setup2d(subEntity);
306
307 }
308 }
309
310 for (size_t i=0; i<li_.size(); i++)
311 li_[i] = LocalKey(subEntity[i], codim[i], index[i]);
312 }
313
315 std::size_t size () const
316 {
317 return std::accumulate(sizes_.begin(), sizes_.end(), 1, std::multiplies<unsigned int>());
318 }
319
321 const LocalKey& localKey (std::size_t i) const
322 {
323 return li_[i];
324 }
325
326private:
327
328 // Number of shape functions on this element per coordinate direction
329 std::array<unsigned, dim> sizes_;
330
331 std::vector<LocalKey> li_;
332};
333
338template<int dim, class LB>
340{
341public:
343 template<typename F, typename C>
344 void interpolate (const F& f, std::vector<C>& out) const
345 {
346 DUNE_THROW(NotImplemented, "BSplineLocalInterpolation::interpolate");
347 }
348
349};
350
360template<class GV, class R>
362{
363 typedef typename GV::ctype D;
364 enum {dim = GV::dimension};
365 friend class BSplineLocalBasis<GV,R>;
366public:
367
373
377 : preBasis_(preBasis),
378 localBasis_(preBasis,*this)
379 {}
380
384 : preBasis_(other.preBasis_),
385 localBasis_(preBasis_,*this)
386 {}
387
394 void bind(const std::array<unsigned,dim>& elementIdx)
395 {
396 /* \todo In the long run we need to precompute a table for this */
397 for (size_t i=0; i<elementIdx.size(); i++)
398 {
399 currentKnotSpan_[i] = 0;
400
401 // Skip over degenerate knot spans
402 while (preBasis_.knotVectors_[i][currentKnotSpan_[i]+1] < preBasis_.knotVectors_[i][currentKnotSpan_[i]]+1e-8)
403 currentKnotSpan_[i]++;
404
405 for (size_t j=0; j<elementIdx[i]; j++)
406 {
407 currentKnotSpan_[i]++;
408
409 // Skip over degenerate knot spans
410 while (preBasis_.knotVectors_[i][currentKnotSpan_[i]+1] < preBasis_.knotVectors_[i][currentKnotSpan_[i]]+1e-8)
411 currentKnotSpan_[i]++;
412 }
413
414 // Compute the geometric transformation from knotspan-local to global coordinates
415 localBasis_.offset_[i] = preBasis_.knotVectors_[i][currentKnotSpan_[i]];
416 localBasis_.scaling_[i][i] = preBasis_.knotVectors_[i][currentKnotSpan_[i]+1] - preBasis_.knotVectors_[i][currentKnotSpan_[i]];
417 }
418
419 // Set up the LocalCoefficients object
420 std::array<unsigned int, dim> sizes;
421 for (size_t i=0; i<dim; i++)
422 sizes[i] = size(i);
423 localCoefficients_.init(sizes);
424 }
425
428 {
429 return localBasis_;
430 }
431
434 {
435 return localCoefficients_;
436 }
437
440 {
441 return localInterpolation_;
442 }
443
445 unsigned size () const
446 {
447 std::size_t r = 1;
448 for (int i=0; i<dim; i++)
449 r *= size(i);
450 return r;
451 }
452
456 {
457 return GeometryTypes::cube(dim);
458 }
459
460//private:
461
463 unsigned int size(int i) const
464 {
465 const auto& order = preBasis_.order_;
466 unsigned int r = order[i]+1; // The 'normal' value
467 if (currentKnotSpan_[i]<order[i]) // Less near the left end of the knot vector
468 r -= (order[i] - currentKnotSpan_[i]);
469 if ( order[i] > (preBasis_.knotVectors_[i].size() - currentKnotSpan_[i] - 2) )
470 r -= order[i] - (preBasis_.knotVectors_[i].size() - currentKnotSpan_[i] - 2);
471 return r;
472 }
473
474 const BSplinePreBasis<GV>& preBasis_;
475
476 BSplineLocalBasis<GV,R> localBasis_;
477 BSplineLocalCoefficients<dim> localCoefficients_;
479
480 // The knot span we are bound to
481 std::array<unsigned,dim> currentKnotSpan_;
482};
483
484
485template<typename GV>
486class BSplineNode;
487
497template<typename GV>
499{
500 static const int dim = GV::dimension;
501
503 class MultiDigitCounter
504 {
505 public:
506
510 MultiDigitCounter(const std::array<unsigned int,dim>& limits)
511 : limits_(limits)
512 {
513 std::fill(counter_.begin(), counter_.end(), 0);
514 }
515
517 MultiDigitCounter& operator++()
518 {
519 for (int i=0; i<dim; i++)
520 {
521 ++counter_[i];
522
523 // no overflow?
524 if (counter_[i] < limits_[i])
525 break;
526
527 counter_[i] = 0;
528 }
529 return *this;
530 }
531
533 const unsigned int& operator[](int i) const
534 {
535 return counter_[i];
536 }
537
539 unsigned int cycle() const
540 {
541 unsigned int r = 1;
542 for (int i=0; i<dim; i++)
543 r *= limits_[i];
544 return r;
545 }
546
547 private:
548
550 const std::array<unsigned int,dim> limits_;
551
553 std::array<unsigned int,dim> counter_;
554
555 };
556
557public:
558
560 using GridView = GV;
561 using size_type = std::size_t;
562
563 using Node = BSplineNode<GV>;
564
565 static constexpr size_type maxMultiIndexSize = 1;
566 static constexpr size_type minMultiIndexSize = 1;
567 static constexpr size_type multiIndexBufferSize = 1;
568
569 // Type used for function values
570 using R = double;
571
591 const std::vector<double>& knotVector,
592 unsigned int order,
593 bool makeOpen = true)
594 : gridView_(gridView)
595 {
596 // \todo Detection of duplicate knots
597 std::fill(elements_.begin(), elements_.end(), knotVector.size()-1);
598
599 // Mediocre sanity check: we don't know the number of grid elements in each direction.
600 // but at least we know the total number of elements.
601 assert( std::accumulate(elements_.begin(), elements_.end(), 1, std::multiplies<unsigned>()) == gridView_.size(0) );
602
603 for (int i=0; i<dim; i++)
604 {
605 // Prepend the correct number of additional knots to open the knot vector
607 if (makeOpen)
608 for (unsigned int j=0; j<order; j++)
609 knotVectors_[i].push_back(knotVector[0]);
610
611 knotVectors_[i].insert(knotVectors_[i].end(), knotVector.begin(), knotVector.end());
612
613 if (makeOpen)
614 for (unsigned int j=0; j<order; j++)
615 knotVectors_[i].push_back(knotVector.back());
616 }
617
618 std::fill(order_.begin(), order_.end(), order);
619 }
620
643 const FieldVector<double,dim>& lowerLeft,
644 const FieldVector<double,dim>& upperRight,
645 const std::array<unsigned int,dim>& elements,
646 unsigned int order,
647 bool makeOpen = true)
648 : elements_(elements),
649 gridView_(gridView)
650 {
651 // Mediocre sanity check: we don't know the number of grid elements in each direction.
652 // but at least we know the total number of elements.
653 assert( std::accumulate(elements_.begin(), elements_.end(), 1, std::multiplies<unsigned>()) == gridView_.size(0) );
654
655 for (int i=0; i<dim; i++)
656 {
657 // Prepend the correct number of additional knots to open the knot vector
659 if (makeOpen)
660 for (unsigned int j=0; j<order; j++)
661 knotVectors_[i].push_back(lowerLeft[i]);
662
663 // Construct the actual knot vector
664 for (size_t j=0; j<elements[i]+1; j++)
665 knotVectors_[i].push_back(lowerLeft[i] + j*(upperRight[i]-lowerLeft[i]) / elements[i]);
666
667 if (makeOpen)
668 for (unsigned int j=0; j<order; j++)
669 knotVectors_[i].push_back(upperRight[i]);
670 }
671
672 std::fill(order_.begin(), order_.end(), order);
673 }
674
677 {}
678
680 const GridView& gridView() const
681 {
682 return gridView_;
683 }
684
686 void update(const GridView& gv)
687 {
688 gridView_ = gv;
689 }
690
694 Node makeNode() const
695 {
696 return Node{this};
697 }
698
699 // Ideally this method should be implemented as
700 //
701 // template<class SizePrefix>
702 // size_type size(const SizePrefix& prefix) const
703 //
704 // But leads to ambiguity with the other size method:
705 //
706 // unsigned int size (size_t d) const
707 //
708 // Once the latter is removed, this implementation should be changed.
709
711 template<class ST, int i>
712 size_type size(const Dune::ReservedVector<ST, i>& prefix) const
713 {
714 assert(prefix.size() == 0 || prefix.size() == 1);
715 return (prefix.size() == 0) ? size() : 0;
716 }
717
719 size_type dimension() const
720 {
721 return size();
722 }
723
725 size_type maxNodeSize() const
726 {
727 size_type result = 1;
728 for (int i=0; i<dim; i++)
729 result *= order_[i]+1;
730 return result;
731 }
732
734 template<typename It>
735 It indices(const Node& node, It it) const
736 {
737 // Local degrees of freedom are arranged in a lattice.
738 // We need the lattice dimensions to be able to compute lattice coordinates from a local index
739 std::array<unsigned int, dim> localSizes;
740 for (int i=0; i<dim; i++)
741 localSizes[i] = node.finiteElement().size(i);
742 for (size_type i = 0, end = node.size() ; i < end ; ++i, ++it)
743 {
744 std::array<unsigned int,dim> localIJK = getIJK(i, localSizes);
745
746 const auto currentKnotSpan = node.finiteElement().currentKnotSpan_;
747 const auto order = order_;
748
749 std::array<unsigned int,dim> globalIJK;
750 for (int i=0; i<dim; i++)
751 globalIJK[i] = std::max((int)currentKnotSpan[i] - (int)order[i], 0) + localIJK[i]; // needs to be a signed type!
752
753 // Make one global flat index from the globalIJK tuple
754 size_type globalIdx = globalIJK[dim-1];
755
756 for (int i=dim-2; i>=0; i--)
757 globalIdx = globalIdx * size(i) + globalIJK[i];
758
759 *it = {{globalIdx}};
760 }
761 return it;
762 }
763
765 unsigned int size () const
766 {
767 unsigned int result = 1;
768 for (size_t i=0; i<dim; i++)
769 result *= size(i);
770 return result;
771 }
772
774 unsigned int size (size_t d) const
775 {
776 return knotVectors_[d].size() - order_[d] - 1;
777 }
778
782 std::vector<FieldVector<R,1> >& out,
783 const std::array<unsigned,dim>& currentKnotSpan) const
784 {
785 // Evaluate
786 std::array<std::vector<R>, dim> oneDValues;
787
788 for (size_t i=0; i<dim; i++)
789 evaluateFunction(in[i], oneDValues[i], knotVectors_[i], order_[i], currentKnotSpan[i]);
790
791 std::array<unsigned int, dim> limits;
792 for (int i=0; i<dim; i++)
793 limits[i] = oneDValues[i].size();
794
795 MultiDigitCounter ijkCounter(limits);
796
797 out.resize(ijkCounter.cycle());
798
799 for (size_t i=0; i<out.size(); i++, ++ijkCounter)
800 {
801 out[i] = R(1.0);
802 for (size_t j=0; j<dim; j++)
803 out[i] *= oneDValues[j][ijkCounter[j]];
804 }
805 }
806
813 std::vector<FieldMatrix<R,1,dim> >& out,
814 const std::array<unsigned,dim>& currentKnotSpan) const
815 {
816 // How many shape functions to we have in each coordinate direction?
817 std::array<unsigned int, dim> limits;
818 for (int i=0; i<dim; i++)
819 {
820 limits[i] = order_[i]+1; // The 'standard' value away from the boundaries of the knot vector
821 if (currentKnotSpan[i]<order_[i])
822 limits[i] -= (order_[i] - currentKnotSpan[i]);
823 if ( order_[i] > (knotVectors_[i].size() - currentKnotSpan[i] - 2) )
824 limits[i] -= order_[i] - (knotVectors_[i].size() - currentKnotSpan[i] - 2);
825 }
826
827 // The lowest knot spans that we need values from
828 std::array<unsigned int, dim> offset;
829 for (int i=0; i<dim; i++)
830 offset[i] = std::max((int)(currentKnotSpan[i] - order_[i]),0);
831
832 // Evaluate 1d function values (needed for the product rule)
833 std::array<std::vector<R>, dim> oneDValues;
834
835 // Evaluate 1d function values of one order lower (needed for the derivative formula)
836 std::array<std::vector<R>, dim> lowOrderOneDValues;
837
838 std::array<DynamicMatrix<R>, dim> values;
839
840 for (size_t i=0; i<dim; i++)
841 {
842 evaluateFunctionFull(in[i], values[i], knotVectors_[i], order_[i], currentKnotSpan[i]);
843 oneDValues[i].resize(knotVectors_[i].size()-order_[i]-1);
844 for (size_t j=0; j<oneDValues[i].size(); j++)
845 oneDValues[i][j] = values[i][order_[i]][j];
846
847 if (order_[i]!=0)
848 {
849 lowOrderOneDValues[i].resize(knotVectors_[i].size()-(order_[i]-1)-1);
850 for (size_t j=0; j<lowOrderOneDValues[i].size(); j++)
851 lowOrderOneDValues[i][j] = values[i][order_[i]-1][j];
852 }
853 }
854
855
856 // Evaluate 1d function derivatives
857 std::array<std::vector<R>, dim> oneDDerivatives;
858 for (size_t i=0; i<dim; i++)
859 {
860 oneDDerivatives[i].resize(limits[i]);
861
862 if (order_[i]==0) // order-zero functions are piecewise constant, hence all derivatives are zero
863 std::fill(oneDDerivatives[i].begin(), oneDDerivatives[i].end(), R(0.0));
864 else
865 {
866 for (size_t j=offset[i]; j<offset[i]+limits[i]; j++)
867 {
868 R derivativeAddend1 = lowOrderOneDValues[i][j] / (knotVectors_[i][j+order_[i]]-knotVectors_[i][j]);
869 R derivativeAddend2 = lowOrderOneDValues[i][j+1] / (knotVectors_[i][j+order_[i]+1]-knotVectors_[i][j+1]);
870 // The two previous terms may evaluate as 0/0. This is to be interpreted as 0.
871 if (std::isnan(derivativeAddend1))
872 derivativeAddend1 = 0;
873 if (std::isnan(derivativeAddend2))
874 derivativeAddend2 = 0;
875 oneDDerivatives[i][j-offset[i]] = order_[i] * ( derivativeAddend1 - derivativeAddend2 );
876 }
877 }
878 }
879
880 // Working towards computing only the parts that we really need:
881 // Let's copy them out into a separate array
882 std::array<std::vector<R>, dim> oneDValuesShort;
883
884 for (int i=0; i<dim; i++)
885 {
886 oneDValuesShort[i].resize(limits[i]);
887
888 for (size_t j=0; j<limits[i]; j++)
889 oneDValuesShort[i][j] = oneDValues[i][offset[i] + j];
890 }
891
892
893
894 // Set up a multi-index to go from consecutive indices to integer coordinates
895 MultiDigitCounter ijkCounter(limits);
896
897 out.resize(ijkCounter.cycle());
898
899 // Complete Jacobian is given by the product rule
900 for (size_t i=0; i<out.size(); i++, ++ijkCounter)
901 for (int j=0; j<dim; j++)
902 {
903 out[i][0][j] = 1.0;
904 for (int k=0; k<dim; k++)
905 out[i][0][j] *= (j==k) ? oneDDerivatives[k][ijkCounter[k]]
906 : oneDValuesShort[k][ijkCounter[k]];
907 }
908
909 }
910
912 template <size_type k>
913 void evaluate(const typename std::array<int,k>& directions,
915 std::vector<FieldVector<R,1> >& out,
916 const std::array<unsigned,dim>& currentKnotSpan) const
917 {
918 if (k != 1 && k != 2)
919 DUNE_THROW(RangeError, "Differentiation order greater than 2 is not supported!");
920
921 // Evaluate 1d function values (needed for the product rule)
922 std::array<std::vector<R>, dim> oneDValues;
923 std::array<std::vector<R>, dim> oneDDerivatives;
924 std::array<std::vector<R>, dim> oneDSecondDerivatives;
925
926 // Evaluate 1d function derivatives
927 if (k==1)
928 for (size_t i=0; i<dim; i++)
929 evaluateAll(in[i], oneDValues[i], true, oneDDerivatives[i], false, oneDSecondDerivatives[i], knotVectors_[i], order_[i], currentKnotSpan[i]);
930 else
931 for (size_t i=0; i<dim; i++)
932 evaluateAll(in[i], oneDValues[i], true, oneDDerivatives[i], true, oneDSecondDerivatives[i], knotVectors_[i], order_[i], currentKnotSpan[i]);
933
934 // The lowest knot spans that we need values from
935 std::array<unsigned int, dim> offset;
936 for (int i=0; i<dim; i++)
937 offset[i] = std::max((int)(currentKnotSpan[i] - order_[i]),0);
938
939 // Set up a multi-index to go from consecutive indices to integer coordinates
940 std::array<unsigned int, dim> limits;
941 for (int i=0; i<dim; i++)
942 {
943 // In a proper implementation, the following line would do
944 //limits[i] = oneDValues[i].size();
945 limits[i] = order_[i]+1; // The 'standard' value away from the boundaries of the knot vector
946 if (currentKnotSpan[i]<order_[i])
947 limits[i] -= (order_[i] - currentKnotSpan[i]);
948 if ( order_[i] > (knotVectors_[i].size() - currentKnotSpan[i] - 2) )
949 limits[i] -= order_[i] - (knotVectors_[i].size() - currentKnotSpan[i] - 2);
950 }
951
952 // Working towards computing only the parts that we really need:
953 // Let's copy them out into a separate array
954 std::array<std::vector<R>, dim> oneDValuesShort;
955
956 for (int i=0; i<dim; i++)
957 {
958 oneDValuesShort[i].resize(limits[i]);
959
960 for (size_t j=0; j<limits[i]; j++)
961 oneDValuesShort[i][j] = oneDValues[i][offset[i] + j];
962 }
963
964
965 MultiDigitCounter ijkCounter(limits);
966
967 out.resize(ijkCounter.cycle());
968
969 if (k == 1)
970 {
971 // Complete Jacobian is given by the product rule
972 for (size_t i=0; i<out.size(); i++, ++ijkCounter)
973 {
974 out[i][0] = 1.0;
975 for (int l=0; l<dim; l++)
976 out[i][0] *= (directions[0]==l) ? oneDDerivatives[l][ijkCounter[l]]
977 : oneDValuesShort[l][ijkCounter[l]];
978 }
979 }
980
981 if (k == 2)
982 {
983 // Complete derivation by deriving the tensor product
984 for (size_t i=0; i<out.size(); i++, ++ijkCounter)
985 {
986 out[i][0] = 1.0;
987 for (int j=0; j<dim; j++)
988 {
989 if (directions[0] != directions[1]) //derivation in two different variables
990 if (directions[0] == j || directions[1] == j) //the spline has to be derived (once) in this direction
991 out[i][0] *= oneDDerivatives[j][ijkCounter[j]];
992 else //no derivation in this direction
993 out[i][0] *= oneDValuesShort[j][ijkCounter[j]];
994 else //spline is derived two times in the same direction
995 if (directions[0] == j) //the spline is derived two times in this direction
996 out[i][0] *= oneDSecondDerivatives[j][ijkCounter[j]];
997 else //no derivation in this direction
998 out[i][0] *= oneDValuesShort[j][ijkCounter[j]];
999 }
1000 }
1001 }
1002 }
1003
1004
1009 static std::array<unsigned int,dim> getIJK(typename GridView::IndexSet::IndexType idx, std::array<unsigned int,dim> elements)
1010 {
1011 std::array<unsigned,dim> result;
1012 for (int i=0; i<dim; i++)
1013 {
1014 result[i] = idx%elements[i];
1015 idx /= elements[i];
1016 }
1017 return result;
1018 }
1019
1028 static void evaluateFunction (const typename GV::ctype& in, std::vector<R>& out,
1029 const std::vector<R>& knotVector,
1030 unsigned int order,
1031 unsigned int currentKnotSpan)
1032 {
1033 std::size_t outSize = order+1; // The 'standard' value away from the boundaries of the knot vector
1034 if (currentKnotSpan<order) // Less near the left end of the knot vector
1035 outSize -= (order - currentKnotSpan);
1036 if ( order > (knotVector.size() - currentKnotSpan - 2) )
1037 outSize -= order - (knotVector.size() - currentKnotSpan - 2);
1038 out.resize(outSize);
1039
1040 // It's not really a matrix that is needed here, a plain 2d array would do
1041 DynamicMatrix<R> N(order+1, knotVector.size()-1);
1042
1043 // The text books on splines use the following geometric condition here to fill the array N
1044 // (see for example Cottrell, Hughes, Bazilevs, Formula (2.1). However, this condition
1045 // only works if splines are never evaluated exactly on the knots.
1046 //
1047 // for (size_t i=0; i<knotVector.size()-1; i++)
1048 // N[0][i] = (knotVector[i] <= in) and (in < knotVector[i+1]);
1049 for (size_t i=0; i<knotVector.size()-1; i++)
1050 N[0][i] = (i == currentKnotSpan);
1051
1052 for (size_t r=1; r<=order; r++)
1053 for (size_t i=0; i<knotVector.size()-r-1; i++)
1054 {
1055 R factor1 = ((knotVector[i+r] - knotVector[i]) > 1e-10)
1056 ? (in - knotVector[i]) / (knotVector[i+r] - knotVector[i])
1057 : 0;
1058 R factor2 = ((knotVector[i+r+1] - knotVector[i+1]) > 1e-10)
1059 ? (knotVector[i+r+1] - in) / (knotVector[i+r+1] - knotVector[i+1])
1060 : 0;
1061 N[r][i] = factor1 * N[r-1][i] + factor2 * N[r-1][i+1];
1062 }
1063
1068 for (size_t i=0; i<out.size(); i++) {
1069 out[i] = N[order][std::max((int)(currentKnotSpan - order),0) + i];
1070 }
1071 }
1072
1085 static void evaluateFunctionFull(const typename GV::ctype& in,
1086 DynamicMatrix<R>& out,
1087 const std::vector<R>& knotVector,
1088 unsigned int order,
1089 unsigned int currentKnotSpan)
1090 {
1091 // It's not really a matrix that is needed here, a plain 2d array would do
1092 DynamicMatrix<R>& N = out;
1093
1094 N.resize(order+1, knotVector.size()-1);
1095
1096 // The text books on splines use the following geometric condition here to fill the array N
1097 // (see for example Cottrell, Hughes, Bazilevs, Formula (2.1). However, this condition
1098 // only works if splines are never evaluated exactly on the knots.
1099 //
1100 // for (size_t i=0; i<knotVector.size()-1; i++)
1101 // N[0][i] = (knotVector[i] <= in) and (in < knotVector[i+1]);
1102 for (size_t i=0; i<knotVector.size()-1; i++)
1103 N[0][i] = (i == currentKnotSpan);
1104
1105 for (size_t r=1; r<=order; r++)
1106 for (size_t i=0; i<knotVector.size()-r-1; i++)
1107 {
1108 R factor1 = ((knotVector[i+r] - knotVector[i]) > 1e-10)
1109 ? (in - knotVector[i]) / (knotVector[i+r] - knotVector[i])
1110 : 0;
1111 R factor2 = ((knotVector[i+r+1] - knotVector[i+1]) > 1e-10)
1112 ? (knotVector[i+r+1] - in) / (knotVector[i+r+1] - knotVector[i+1])
1113 : 0;
1114 N[r][i] = factor1 * N[r-1][i] + factor2 * N[r-1][i+1];
1115 }
1116 }
1117
1118
1128 static void evaluateAll(const typename GV::ctype& in,
1129 std::vector<R>& out,
1130 bool evaluateJacobian, std::vector<R>& outJac,
1131 bool evaluateHessian, std::vector<R>& outHess,
1132 const std::vector<R>& knotVector,
1133 unsigned int order,
1134 unsigned int currentKnotSpan)
1135 {
1136 // How many shape functions to we have in each coordinate direction?
1137 unsigned int limit;
1138 limit = order+1; // The 'standard' value away from the boundaries of the knot vector
1139 if (currentKnotSpan<order)
1140 limit -= (order - currentKnotSpan);
1141 if ( order > (knotVector.size() - currentKnotSpan - 2) )
1142 limit -= order - (knotVector.size() - currentKnotSpan - 2);
1143
1144 // The lowest knot spans that we need values from
1145 unsigned int offset;
1146 offset = std::max((int)(currentKnotSpan - order),0);
1147
1148 // Evaluate 1d function values (needed for the product rule)
1149 DynamicMatrix<R> values;
1150
1151 evaluateFunctionFull(in, values, knotVector, order, currentKnotSpan);
1152
1153 out.resize(knotVector.size()-order-1);
1154 for (size_t j=0; j<out.size(); j++)
1155 out[j] = values[order][j];
1156
1157 // Evaluate 1d function values of one order lower (needed for the derivative formula)
1158 std::vector<R> lowOrderOneDValues;
1159
1160 if (order!=0)
1161 {
1162 lowOrderOneDValues.resize(knotVector.size()-(order-1)-1);
1163 for (size_t j=0; j<lowOrderOneDValues.size(); j++)
1164 lowOrderOneDValues[j] = values[order-1][j];
1165 }
1166
1167 // Evaluate 1d function values of two order lower (needed for the (second) derivative formula)
1168 std::vector<R> lowOrderTwoDValues;
1169
1170 if (order>1 && evaluateHessian)
1171 {
1172 lowOrderTwoDValues.resize(knotVector.size()-(order-2)-1);
1173 for (size_t j=0; j<lowOrderTwoDValues.size(); j++)
1174 lowOrderTwoDValues[j] = values[order-2][j];
1175 }
1176
1177 // Evaluate 1d function derivatives
1178 if (evaluateJacobian)
1179 {
1180 outJac.resize(limit);
1181
1182 if (order==0) // order-zero functions are piecewise constant, hence all derivatives are zero
1183 std::fill(outJac.begin(), outJac.end(), R(0.0));
1184 else
1185 {
1186 for (size_t j=offset; j<offset+limit; j++)
1187 {
1188 R derivativeAddend1 = lowOrderOneDValues[j] / (knotVector[j+order]-knotVector[j]);
1189 R derivativeAddend2 = lowOrderOneDValues[j+1] / (knotVector[j+order+1]-knotVector[j+1]);
1190 // The two previous terms may evaluate as 0/0. This is to be interpreted as 0.
1191 if (std::isnan(derivativeAddend1))
1192 derivativeAddend1 = 0;
1193 if (std::isnan(derivativeAddend2))
1194 derivativeAddend2 = 0;
1195 outJac[j-offset] = order * ( derivativeAddend1 - derivativeAddend2 );
1196 }
1197 }
1198 }
1199
1200 // Evaluate 1d function second derivatives
1201 if (evaluateHessian)
1202 {
1203 outHess.resize(limit);
1204
1205 if (order<2) // order-zero functions are piecewise constant, hence all derivatives are zero
1206 std::fill(outHess.begin(), outHess.end(), R(0.0));
1207 else
1208 {
1209 for (size_t j=offset; j<offset+limit; j++)
1210 {
1211 assert(j+2 < lowOrderTwoDValues.size());
1212 R derivativeAddend1 = lowOrderTwoDValues[j] / (knotVector[j+order]-knotVector[j]) / (knotVector[j+order-1]-knotVector[j]);
1213 R derivativeAddend2 = lowOrderTwoDValues[j+1] / (knotVector[j+order]-knotVector[j]) / (knotVector[j+order]-knotVector[j+1]);
1214 R derivativeAddend3 = lowOrderTwoDValues[j+1] / (knotVector[j+order+1]-knotVector[j+1]) / (knotVector[j+order]-knotVector[j+1]);
1215 R derivativeAddend4 = lowOrderTwoDValues[j+2] / (knotVector[j+order+1]-knotVector[j+1]) / (knotVector[j+1+order]-knotVector[j+2]);
1216 // The two previous terms may evaluate as 0/0. This is to be interpreted as 0.
1217
1218 if (std::isnan(derivativeAddend1))
1219 derivativeAddend1 = 0;
1220 if (std::isnan(derivativeAddend2))
1221 derivativeAddend2 = 0;
1222 if (std::isnan(derivativeAddend3))
1223 derivativeAddend3 = 0;
1224 if (std::isnan(derivativeAddend4))
1225 derivativeAddend4 = 0;
1226 outHess[j-offset] = order * (order-1) * ( derivativeAddend1 - derivativeAddend2 -derivativeAddend3 + derivativeAddend4 );
1227 }
1228 }
1229 }
1230 }
1231
1232
1234 std::array<unsigned int, dim> order_;
1235
1237 std::array<std::vector<double>, dim> knotVectors_;
1238
1240 std::array<unsigned,dim> elements_;
1241
1242 GridView gridView_;
1243};
1244
1245
1246
1247template<typename GV>
1248class BSplineNode :
1249 public LeafBasisNode
1250{
1251 static const int dim = GV::dimension;
1252
1253public:
1254
1255 using size_type = std::size_t;
1256 using Element = typename GV::template Codim<0>::Entity;
1257 using FiniteElement = BSplineLocalFiniteElement<GV,double>;
1258
1259 BSplineNode(const BSplinePreBasis<GV>* preBasis) :
1260 preBasis_(preBasis),
1261 finiteElement_(*preBasis)
1262 {}
1263
1265 const Element& element() const
1266 {
1267 return element_;
1268 }
1269
1274 const FiniteElement& finiteElement() const
1275 {
1276 return finiteElement_;
1277 }
1278
1280 void bind(const Element& e)
1281 {
1282 element_ = e;
1283 auto elementIndex = preBasis_->gridView().indexSet().index(e);
1284 finiteElement_.bind(preBasis_->getIJK(elementIndex,preBasis_->elements_));
1285 this->setSize(finiteElement_.size());
1286 }
1287
1288protected:
1289
1290 const BSplinePreBasis<GV>* preBasis_;
1291
1292 FiniteElement finiteElement_;
1293 Element element_;
1294};
1295
1296
1297
1298namespace BasisFactory {
1299
1306inline auto bSpline(const std::vector<double>& knotVector,
1307 unsigned int order,
1308 bool makeOpen = true)
1309{
1310 return [&knotVector, order, makeOpen](const auto& gridView) {
1311 return BSplinePreBasis<std::decay_t<decltype(gridView)>>(gridView, knotVector, order, makeOpen);
1312 };
1313}
1314
1315} // end namespace BasisFactory
1316
1317// *****************************************************************************
1318// This is the actual global basis implementation based on the reusable parts.
1319// *****************************************************************************
1320
1327template<typename GV>
1329
1330
1331} // namespace Functions
1332
1333} // namespace Dune
1334
1335#endif // DUNE_FUNCTIONS_FUNCTIONSPACEBASES_BSPLINEBASIS_HH
Construct a matrix with a dynamic size.
Definition: dynmatrix.hh:61
void resize(size_type r, size_type c, value_type v=value_type())
resize matrix to r × c
Definition: dynmatrix.hh:106
A dense n x m matrix.
Definition: fmatrix.hh:117
vector space out of a tensor product of fields.
Definition: fvector.hh:95
LocalBasis class in the sense of dune-localfunctions, presenting the restriction of a B-spline patch ...
Definition: bsplinebasis.hh:46
LocalBasisTraits< D, dim, FieldVector< D, dim >, R, 1, FieldVector< R, 1 >, FieldMatrix< R, 1, dim > > Traits
export type traits for function signature
Definition: bsplinebasis.hh:55
unsigned int order() const
Polynomial order of the shape functions.
Definition: bsplinebasis.hh:140
std::size_t size() const
Return the number of basis functions on the current knot span.
Definition: bsplinebasis.hh:147
void evaluate(const typename std::array< int, k > &directions, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions and derivatives of any order.
Definition: bsplinebasis.hh:97
void evaluateFunction(const FieldVector< D, dim > &in, std::vector< FieldVector< R, 1 > > &out) const
Evaluate all shape functions.
Definition: bsplinebasis.hh:70
void evaluateJacobian(const FieldVector< D, dim > &in, std::vector< FieldMatrix< D, 1, dim > > &out) const
Evaluate Jacobian of all shape functions.
Definition: bsplinebasis.hh:82
BSplineLocalBasis(const BSplinePreBasis< GV > &preBasis, const BSplineLocalFiniteElement< GV, R > &lFE)
Constructor with a given B-spline patch.
Definition: bsplinebasis.hh:61
Attaches a shape function to an entity.
Definition: bsplinebasis.hh:178
const LocalKey & localKey(std::size_t i) const
get i'th index
Definition: bsplinebasis.hh:321
std::size_t size() const
number of coefficients
Definition: bsplinebasis.hh:315
LocalFiniteElement in the sense of dune-localfunctions, for the B-spline basis on tensor-product grid...
Definition: bsplinebasis.hh:362
BSplineLocalFiniteElement(const BSplineLocalFiniteElement &other)
Copy constructor.
Definition: bsplinebasis.hh:383
const BSplineLocalInterpolation< dim, BSplineLocalBasis< GV, R > > & localInterpolation() const
Hand out a LocalInterpolation object.
Definition: bsplinebasis.hh:439
LocalFiniteElementTraits< BSplineLocalBasis< GV, R >, BSplineLocalCoefficients< dim >, BSplineLocalInterpolation< dim, BSplineLocalBasis< GV, R > > > Traits
Export various types related to this LocalFiniteElement.
Definition: bsplinebasis.hh:372
BSplineLocalFiniteElement(const BSplinePreBasis< GV > &preBasis)
Constructor with a given B-spline basis.
Definition: bsplinebasis.hh:376
const BSplineLocalCoefficients< dim > & localCoefficients() const
Hand out a LocalCoefficients object.
Definition: bsplinebasis.hh:433
void bind(const std::array< unsigned, dim > &elementIdx)
Bind LocalFiniteElement to a specific knot span of the spline patch.
Definition: bsplinebasis.hh:394
GeometryType type() const
Return the reference element that the local finite element is defined on (here, a hypercube)
Definition: bsplinebasis.hh:455
unsigned size() const
Number of shape functions in this finite element.
Definition: bsplinebasis.hh:445
unsigned int size(int i) const
Number of degrees of freedom for one coordinate direction.
Definition: bsplinebasis.hh:463
const BSplineLocalBasis< GV, R > & localBasis() const
Hand out a LocalBasis object.
Definition: bsplinebasis.hh:427
Local interpolation in the sense of dune-localfunctions, for the B-spline basis on tensor-product gri...
Definition: bsplinebasis.hh:340
void interpolate(const F &f, std::vector< C > &out) const
Local interpolation of a function.
Definition: bsplinebasis.hh:344
Pre-basis for B-spline basis.
Definition: bsplinebasis.hh:499
std::array< unsigned, dim > elements_
Number of grid elements in the different coordinate directions.
Definition: bsplinebasis.hh:1240
static void evaluateFunctionFull(const typename GV::ctype &in, DynamicMatrix< R > &out, const std::vector< R > &knotVector, unsigned int order, unsigned int currentKnotSpan)
Evaluate all one-dimensional B-spline functions for a given coordinate direction.
Definition: bsplinebasis.hh:1085
void evaluateFunction(const FieldVector< typename GV::ctype, dim > &in, std::vector< FieldVector< R, 1 > > &out, const std::array< unsigned, dim > &currentKnotSpan) const
Evaluate all B-spline basis functions at a given point.
Definition: bsplinebasis.hh:781
std::array< unsigned int, dim > order_
Order of the B-spline for each space dimension.
Definition: bsplinebasis.hh:1234
size_type dimension() const
Get the total dimension of the space spanned by this basis.
Definition: bsplinebasis.hh:719
static void evaluateAll(const typename GV::ctype &in, std::vector< R > &out, bool evaluateJacobian, std::vector< R > &outJac, bool evaluateHessian, std::vector< R > &outHess, const std::vector< R > &knotVector, unsigned int order, unsigned int currentKnotSpan)
Evaluate the second derivatives of all one-dimensional B-spline functions for a given coordinate dire...
Definition: bsplinebasis.hh:1128
static void evaluateFunction(const typename GV::ctype &in, std::vector< R > &out, const std::vector< R > &knotVector, unsigned int order, unsigned int currentKnotSpan)
Evaluate all one-dimensional B-spline functions for a given coordinate direction.
Definition: bsplinebasis.hh:1028
unsigned int size(size_t d) const
Number of shape functions in one direction.
Definition: bsplinebasis.hh:774
GV GridView
The grid view that the FE space is defined on.
Definition: bsplinebasis.hh:560
It indices(const Node &node, It it) const
Maps from subtree index set [0..size-1] to a globally unique multi index in global basis.
Definition: bsplinebasis.hh:735
void evaluate(const typename std::array< int, k > &directions, const FieldVector< typename GV::ctype, dim > &in, std::vector< FieldVector< R, 1 > > &out, const std::array< unsigned, dim > &currentKnotSpan) const
Evaluate Derivatives of all B-spline basis functions.
Definition: bsplinebasis.hh:913
void update(const GridView &gv)
Update the stored grid view, to be called if the grid has changed.
Definition: bsplinebasis.hh:686
void initializeIndices()
Initialize the global indices.
Definition: bsplinebasis.hh:676
size_type size(const Dune::ReservedVector< ST, i > &prefix) const
Return number of possible values for next position in multi index.
Definition: bsplinebasis.hh:712
unsigned int size() const
Total number of B-spline basis functions.
Definition: bsplinebasis.hh:765
const GridView & gridView() const
Obtain the grid view that the basis is defined on.
Definition: bsplinebasis.hh:680
static std::array< unsigned int, dim > getIJK(typename GridView::IndexSet::IndexType idx, std::array< unsigned int, dim > elements)
Compute integer element coordinates from the element index.
Definition: bsplinebasis.hh:1009
Node makeNode() const
Create tree node.
Definition: bsplinebasis.hh:694
BSplinePreBasis(const GridView &gridView, const std::vector< double > &knotVector, unsigned int order, bool makeOpen=true)
Construct a B-spline basis for a given grid view and set of knot vectors.
Definition: bsplinebasis.hh:590
void evaluateJacobian(const FieldVector< typename GV::ctype, dim > &in, std::vector< FieldMatrix< R, 1, dim > > &out, const std::array< unsigned, dim > &currentKnotSpan) const
Evaluate Jacobian of all B-spline basis functions.
Definition: bsplinebasis.hh:812
std::array< std::vector< double >, dim > knotVectors_
The knot vectors, one for each space dimension.
Definition: bsplinebasis.hh:1237
size_type maxNodeSize() const
Get the maximal number of DOFs associated to node for any element.
Definition: bsplinebasis.hh:725
BSplinePreBasis(const GridView &gridView, const FieldVector< double, dim > &lowerLeft, const FieldVector< double, dim > &upperRight, const std::array< unsigned int, dim > &elements, unsigned int order, bool makeOpen=true)
Construct a B-spline basis for a given grid view with uniform knot vectors.
Definition: bsplinebasis.hh:642
Global basis for given pre-basis.
Definition: defaultglobalbasis.hh:46
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:125
Describe position of one degree of freedom.
Definition: localkey.hh:23
Default exception for dummy implementations.
Definition: exceptions.hh:263
Default exception class for range errors.
Definition: exceptions.hh:254
A Vector class with statically reserved memory.
Definition: reservedvector.hh:47
constexpr size_type size() const noexcept
Returns number of elements in the vector.
Definition: reservedvector.hh:387
This file implements a quadratic diagonal matrix of fixed size.
This file implements a dense matrix with dynamic numbers of rows and columns.
void umv(const X &x, Y &y) const
y += A x
Definition: diagonalmatrix.hh:297
#define DUNE_THROW(E, m)
Definition: exceptions.hh:218
auto bSpline(const std::vector< double > &knotVector, unsigned int order, bool makeOpen=true)
Create a pre-basis factory that can create a B-spline pre-basis.
Definition: bsplinebasis.hh:1306
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:472
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:291
constexpr HybridTreePath< T..., std::size_t > push_back(const HybridTreePath< T... > &tp, std::size_t i)
Appends a run time index to a HybridTreePath.
Definition: treepath.hh:281
Dune namespace.
Definition: alignedallocator.hh:13
Static tag representing a codimension.
Definition: dimension.hh:24
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:34
D DomainType
domain type
Definition: localbasis.hh:42
traits helper struct
Definition: localfiniteelementtraits.hh:13
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)