Dune Core Modules (2.9.0)

brezzidouglasmarini2simplex2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
6#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
7
8#include <vector>
9
11#include <dune/localfunctions/common/localinterpolation.hh>
12
13namespace Dune
14{
15
24 template<class LB>
26 {
27
28 public:
31 {
32 sign0 = sign1 = sign2 = 1.0;
33 }
34
41 {
42 sign0 = sign1 = sign2 = 1.0;
43 if (s & 1)
44 {
45 sign0 = -1.0;
46 }
47 if (s & 2)
48 {
49 sign1 = -1.0;
50 }
51 if (s & 4)
52 {
53 sign2 = -1.0;
54 }
55
56 m0[0] = 0.5;
57 m0[1] = 0.0;
58 m1[0] = 0.0;
59 m1[1] = 0.5;
60 m2[0] = 0.5;
61 m2[1] = 0.5;
62 n0[0] = 0.0;
63 n0[1] = -1.0;
64 n1[0] = -1.0;
65 n1[1] = 0.0;
66 n2[0] = 1.0/sqrt(2.0);
67 n2[1] = 1.0/sqrt(2.0);
68 c0 = 0.5*n0[0] - 1.0*n0[1];
69 c1 = -1.0*n1[0] + 0.5*n1[1];
70 c2 = 0.5*n2[0] + 0.5*n2[1];
71 }
72
81 template<typename F, typename C>
82 void interpolate(const F& ff, std::vector<C>& out) const
83 {
84 // f gives v*outer normal at a point on the edge!
85 typedef typename LB::Traits::RangeFieldType Scalar;
86 typedef typename LB::Traits::DomainFieldType Vector;
87
88 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
89
90 out.resize(12);
91 fill(out.begin(), out.end(), 0.0);
92
93 const int qOrder = 4;
95
96 for (typename Dune::QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
97 {
98 Scalar qPos = it->position();
99
100 typename LB::Traits::DomainType localPos;
101
102 localPos[0] = qPos;
103 localPos[1] = 0.0;
104 auto y = f(localPos);
105 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0/c0;
106 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(1.0 - 2.0*qPos)*it->weight()/c0;
107 out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0/c0;
108
109 localPos[0] = 0.0;
110 localPos[1] = qPos;
111 y = f(localPos);
112 out[3] += (y[0]*n1[0]+y[1]*n1[1])*it->weight()*sign1/c1;
113 out[4] += (y[0]*n1[0]+y[1]*n1[1])*(2.0*qPos-1.0)*it->weight()/c1;
114 out[5] += (y[0]*n1[0]+y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1/c1;
115
116 localPos[0] = 1.0 - qPos;
117 localPos[1] = qPos;
118 y = f(localPos);
119 out[6] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2/c2;
120 out[7] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight()/c2;
121 out[8] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2/c2;
122 }
123
124 // a volume part is needed here for dofs: 9 10 11
126
127 for (typename QuadratureRule<Vector,2>::const_iterator it=rule2.begin(); it!=rule2.end(); ++it)
128 {
129 typename LB::Traits::DomainType localPos = it->position();
130 auto y = f(localPos);
131
132 out[9] += y[0]*it->weight();
133 out[10] += y[1]*it->weight();
134 out[11] += (y[0]*(localPos[0]-2.0*localPos[0]*localPos[1]-localPos[0]*localPos[0])
135 +y[1]*(-localPos[1]+2.0*localPos[0]*localPos[1]+localPos[1]*localPos[1]))*it->weight();
136 }
137 }
138
139 private:
140 typename LB::Traits::RangeFieldType sign0, sign1, sign2;
141 typename LB::Traits::DomainType m0, m1, m2;
142 typename LB::Traits::DomainType n0, n1, n2;
143 typename LB::Traits::RangeFieldType c0, c1, c2;
144 };
145} // end namespace Dune
146#endif // DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
First order Brezzi-Douglas-Marini shape functions on triangles.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:26
BDM2Simplex2DLocalInterpolation()
Standard constructor.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:30
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:82
BDM2Simplex2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 8.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:40
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:154
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:266
constexpr GeometryType simplex(unsigned int dim)
Returns a GeometryType representing a simplex of dimension dim.
Definition: type.hh:463
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)