Dune Core Modules (2.9.0)

brezzidouglasmarini2cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_CUBE2D_LOCALINTERPOLATION_HH
6#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_CUBE2D_LOCALINTERPOLATION_HH
7
8#include <vector>
9
11#include <dune/localfunctions/common/localinterpolation.hh>
12
13namespace Dune
14{
15
24 template<class LB>
26 {
27
28 public:
31 {
32 sign0 = sign1 = sign2 = sign3 = 1.0;
33 }
34
41 {
42 sign0 = sign1 = sign2 = sign3 = 1.0;
43 if (s & 1)
44 {
45 sign0 = -1.0;
46 }
47 if (s & 2)
48 {
49 sign1 = -1.0;
50 }
51 if (s & 4)
52 {
53 sign2 = -1.0;
54 }
55 if (s & 8)
56 {
57 sign3 = -1.0;
58 }
59
60 n0[0] = -1.0;
61 n0[1] = 0.0;
62 n1[0] = 1.0;
63 n1[1] = 0.0;
64 n2[0] = 0.0;
65 n2[1] = -1.0;
66 n3[0] = 0.0;
67 n3[1] = 1.0;
68 }
69
78 template<typename F, typename C>
79 void interpolate(const F& ff, std::vector<C>& out) const
80 {
81 // f gives v*outer normal at a point on the edge!
82 typedef typename LB::Traits::RangeFieldType Scalar;
83 typedef typename LB::Traits::DomainFieldType Vector;
84
85 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
86
87 out.resize(14);
88 fill(out.begin(), out.end(), 0.0);
89
90 const int qOrder = 4;
92
93 for (typename QuadratureRule<Scalar,1>::const_iterator it = rule.begin();
94 it != rule.end(); ++it)
95 {
96 Scalar qPos = it->position();
97
98 typename LB::Traits::DomainType localPos;
99
100 localPos[0] = 0.0;
101 localPos[1] = qPos;
102 auto y = f(localPos);
103 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
104 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
105 out[2] += (y[0]*n0[0] + y[1]*n0[1])*(8.0*qPos*qPos - 8.0*qPos + 1.0)*it->weight()*sign0;
106
107 localPos[0] = 1.0;
108 localPos[1] = qPos;
109 y = f(localPos);
110 out[3] += (y[0]*n1[0]+y[1]*n1[1])*it->weight()*sign1;
111 out[4] += (y[0]*n1[0]+y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
112 out[5] += (y[0]*n1[0]+y[1]*n1[1])*(8.0*qPos*qPos - 8.0*qPos + 1.0)*it->weight()*sign1;
113
114 localPos[0] = qPos;
115 localPos[1] = 0.0;
116 y = f(localPos);
117 out[6] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
118 out[7] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
119 out[8] += (y[0]*n2[0] + y[1]*n2[1])*(8.0*qPos*qPos - 8.0*qPos + 1.0)*it->weight()*sign2;
120
121 localPos[0] = qPos;
122 localPos[1] = 1.0;
123 y = f(localPos);
124 out[9] += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
125 out[10] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
126 out[11] += (y[0]*n3[0] + y[1]*n3[1])*(8.0*qPos*qPos - 8.0*qPos + 1.0)*it->weight()*sign3;
127 }
128
130
131 for (typename QuadratureRule<Vector,2>::const_iterator it=rule2.begin(); it!=rule2.end(); ++it)
132 {
133 auto y = f(it->position());
134 out[12] += y[0]*it->weight();
135 out[13] += y[1]*it->weight();
136 }
137 }
138
139 private:
140 typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
141 typename LB::Traits::DomainType n0, n1, n2, n3;
142 };
143} // end namespace Dune
144#endif // DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_CUBE2D_LOCALINTERPOLATION_HH
First order Brezzi-Douglas-Marini shape functions on quadrilaterals.
Definition: brezzidouglasmarini2cube2dlocalinterpolation.hh:26
BDM2Cube2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 16.
Definition: brezzidouglasmarini2cube2dlocalinterpolation.hh:40
BDM2Cube2DLocalInterpolation()
Standard constructor.
Definition: brezzidouglasmarini2cube2dlocalinterpolation.hh:30
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: brezzidouglasmarini2cube2dlocalinterpolation.hh:79
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:154
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:266
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:472
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)