Dune Core Modules (2.9.0)

affinegeometry.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH
6#define DUNE_GEOMETRY_AFFINEGEOMETRY_HH
7
13#include <cmath>
14
17
18#include <dune/geometry/type.hh>
19
20namespace Dune
21{
22
23 // External Forward Declarations
24 // -----------------------------
25
26 namespace Geo
27 {
28
29 template< typename Implementation >
30 class ReferenceElement;
31
32 template< class ctype, int dim >
33 class ReferenceElementImplementation;
34
35 template< class ctype, int dim >
36 struct ReferenceElements;
37
38 }
39
40
41 namespace Impl
42 {
43
44 // FieldMatrixHelper
45 // -----------------
46
47 template< class ct >
48 struct FieldMatrixHelper
49 {
50 typedef ct ctype;
51
52 template< int m, int n >
53 static void Ax ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &ret )
54 {
55 for( int i = 0; i < m; ++i )
56 {
57 ret[ i ] = ctype( 0 );
58 for( int j = 0; j < n; ++j )
59 ret[ i ] += A[ i ][ j ] * x[ j ];
60 }
61 }
62
63 template< int m, int n >
64 static void ATx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &ret )
65 {
66 for( int i = 0; i < n; ++i )
67 {
68 ret[ i ] = ctype( 0 );
69 for( int j = 0; j < m; ++j )
70 ret[ i ] += A[ j ][ i ] * x[ j ];
71 }
72 }
73
74 template< int m, int n, int p >
75 static void AB ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, n, p > &B, FieldMatrix< ctype, m, p > &ret )
76 {
77 for( int i = 0; i < m; ++i )
78 {
79 for( int j = 0; j < p; ++j )
80 {
81 ret[ i ][ j ] = ctype( 0 );
82 for( int k = 0; k < n; ++k )
83 ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
84 }
85 }
86 }
87
88 template< int m, int n, int p >
89 static void ATBT ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, p, m > &B, FieldMatrix< ctype, n, p > &ret )
90 {
91 for( int i = 0; i < n; ++i )
92 {
93 for( int j = 0; j < p; ++j )
94 {
95 ret[ i ][ j ] = ctype( 0 );
96 for( int k = 0; k < m; ++k )
97 ret[ i ][ j ] += A[ k ][ i ] * B[ j ][ k ];
98 }
99 }
100 }
101
102 template< int m, int n >
103 static void ATA_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
104 {
105 for( int i = 0; i < n; ++i )
106 {
107 for( int j = 0; j <= i; ++j )
108 {
109 ret[ i ][ j ] = ctype( 0 );
110 for( int k = 0; k < m; ++k )
111 ret[ i ][ j ] += A[ k ][ i ] * A[ k ][ j ];
112 }
113 }
114 }
115
116 template< int m, int n >
117 static void ATA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
118 {
119 for( int i = 0; i < n; ++i )
120 {
121 for( int j = 0; j <= i; ++j )
122 {
123 ret[ i ][ j ] = ctype( 0 );
124 for( int k = 0; k < m; ++k )
125 ret[ i ][ j ] += A[ k ][ i ] * A[ k ][ j ];
126 ret[ j ][ i ] = ret[ i ][ j ];
127 }
128
129 ret[ i ][ i ] = ctype( 0 );
130 for( int k = 0; k < m; ++k )
131 ret[ i ][ i ] += A[ k ][ i ] * A[ k ][ i ];
132 }
133 }
134
135 template< int m, int n >
136 static void AAT_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
137 {
138 /*
139 if (m==2) {
140 ret[0][0] = A[0]*A[0];
141 ret[1][1] = A[1]*A[1];
142 ret[1][0] = A[0]*A[1];
143 }
144 else
145 */
146 for( int i = 0; i < m; ++i )
147 {
148 for( int j = 0; j <= i; ++j )
149 {
150 ctype &retij = ret[ i ][ j ];
151 retij = A[ i ][ 0 ] * A[ j ][ 0 ];
152 for( int k = 1; k < n; ++k )
153 retij += A[ i ][ k ] * A[ j ][ k ];
154 }
155 }
156 }
157
158 template< int m, int n >
159 static void AAT ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
160 {
161 for( int i = 0; i < m; ++i )
162 {
163 for( int j = 0; j < i; ++j )
164 {
165 ret[ i ][ j ] = ctype( 0 );
166 for( int k = 0; k < n; ++k )
167 ret[ i ][ j ] += A[ i ][ k ] * A[ j ][ k ];
168 ret[ j ][ i ] = ret[ i ][ j ];
169 }
170 ret[ i ][ i ] = ctype( 0 );
171 for( int k = 0; k < n; ++k )
172 ret[ i ][ i ] += A[ i ][ k ] * A[ i ][ k ];
173 }
174 }
175
176 template< int n >
177 static void Lx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
178 {
179 for( int i = 0; i < n; ++i )
180 {
181 ret[ i ] = ctype( 0 );
182 for( int j = 0; j <= i; ++j )
183 ret[ i ] += L[ i ][ j ] * x[ j ];
184 }
185 }
186
187 template< int n >
188 static void LTx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
189 {
190 for( int i = 0; i < n; ++i )
191 {
192 ret[ i ] = ctype( 0 );
193 for( int j = i; j < n; ++j )
194 ret[ i ] += L[ j ][ i ] * x[ j ];
195 }
196 }
197
198 template< int n >
199 static void LTL ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
200 {
201 for( int i = 0; i < n; ++i )
202 {
203 for( int j = 0; j < i; ++j )
204 {
205 ret[ i ][ j ] = ctype( 0 );
206 for( int k = i; k < n; ++k )
207 ret[ i ][ j ] += L[ k ][ i ] * L[ k ][ j ];
208 ret[ j ][ i ] = ret[ i ][ j ];
209 }
210 ret[ i ][ i ] = ctype( 0 );
211 for( int k = i; k < n; ++k )
212 ret[ i ][ i ] += L[ k ][ i ] * L[ k ][ i ];
213 }
214 }
215
216 template< int n >
217 static void LLT ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
218 {
219 for( int i = 0; i < n; ++i )
220 {
221 for( int j = 0; j < i; ++j )
222 {
223 ret[ i ][ j ] = ctype( 0 );
224 for( int k = 0; k <= j; ++k )
225 ret[ i ][ j ] += L[ i ][ k ] * L[ j ][ k ];
226 ret[ j ][ i ] = ret[ i ][ j ];
227 }
228 ret[ i ][ i ] = ctype( 0 );
229 for( int k = 0; k <= i; ++k )
230 ret[ i ][ i ] += L[ i ][ k ] * L[ i ][ k ];
231 }
232 }
233
234 template< int n >
235 static bool cholesky_L ( const FieldMatrix< ctype, n, n > &A, FieldMatrix< ctype, n, n > &ret, const bool checkSingular = false )
236 {
237 using std::sqrt;
238 for( int i = 0; i < n; ++i )
239 {
240 ctype &rii = ret[ i ][ i ];
241
242 ctype xDiag = A[ i ][ i ];
243 for( int j = 0; j < i; ++j )
244 xDiag -= ret[ i ][ j ] * ret[ i ][ j ];
245
246 // in some cases A can be singular, e.g. when checking local for
247 // outside points during checkInside
248 if( checkSingular && ! ( xDiag > ctype( 0 )) )
249 return false ;
250
251 // otherwise this should be true always
252 assert( xDiag > ctype( 0 ) );
253 rii = sqrt( xDiag );
254
255 ctype invrii = ctype( 1 ) / rii;
256 for( int k = i+1; k < n; ++k )
257 {
258 ctype x = A[ k ][ i ];
259 for( int j = 0; j < i; ++j )
260 x -= ret[ i ][ j ] * ret[ k ][ j ];
261 ret[ k ][ i ] = invrii * x;
262 }
263 }
264
265 // return true for meaning A is non-singular
266 return true;
267 }
268
269 template< int n >
270 static ctype detL ( const FieldMatrix< ctype, n, n > &L )
271 {
272 ctype det( 1 );
273 for( int i = 0; i < n; ++i )
274 det *= L[ i ][ i ];
275 return det;
276 }
277
278 template< int n >
279 static ctype invL ( FieldMatrix< ctype, n, n > &L )
280 {
281 ctype det( 1 );
282 for( int i = 0; i < n; ++i )
283 {
284 ctype &lii = L[ i ][ i ];
285 det *= lii;
286 lii = ctype( 1 ) / lii;
287 for( int j = 0; j < i; ++j )
288 {
289 ctype &lij = L[ i ][ j ];
290 ctype x = lij * L[ j ][ j ];
291 for( int k = j+1; k < i; ++k )
292 x += L[ i ][ k ] * L[ k ][ j ];
293 lij = (-lii) * x;
294 }
295 }
296 return det;
297 }
298
299 // calculates x := L^{-1} x
300 template< int n >
301 static void invLx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
302 {
303 for( int i = 0; i < n; ++i )
304 {
305 for( int j = 0; j < i; ++j )
306 x[ i ] -= L[ i ][ j ] * x[ j ];
307 x[ i ] /= L[ i ][ i ];
308 }
309 }
310
311 // calculates x := L^{-T} x
312 template< int n >
313 static void invLTx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
314 {
315 for( int i = n; i > 0; --i )
316 {
317 for( int j = i; j < n; ++j )
318 x[ i-1 ] -= L[ j ][ i-1 ] * x[ j ];
319 x[ i-1 ] /= L[ i-1 ][ i-1 ];
320 }
321 }
322
323 template< int n >
324 static ctype spdDetA ( const FieldMatrix< ctype, n, n > &A )
325 {
326 // return A[0][0]*A[1][1]-A[1][0]*A[1][0];
327 FieldMatrix< ctype, n, n > L;
328 cholesky_L( A, L );
329 return detL( L );
330 }
331
332 template< int n >
333 static ctype spdInvA ( FieldMatrix< ctype, n, n > &A )
334 {
335 FieldMatrix< ctype, n, n > L;
336 cholesky_L( A, L );
337 const ctype det = invL( L );
338 LTL( L, A );
339 return det;
340 }
341
342 // calculate x := A^{-1} x
343 template< int n >
344 static bool spdInvAx ( FieldMatrix< ctype, n, n > &A, FieldVector< ctype, n > &x, const bool checkSingular = false )
345 {
346 FieldMatrix< ctype, n, n > L;
347 const bool invertible = cholesky_L( A, L, checkSingular );
348 if( ! invertible ) return invertible ;
349 invLx( L, x );
350 invLTx( L, x );
351 return invertible;
352 }
353
354 template< int m, int n >
355 static ctype detATA ( const FieldMatrix< ctype, m, n > &A )
356 {
357 if( m >= n )
358 {
359 FieldMatrix< ctype, n, n > ata;
360 ATA_L( A, ata );
361 return spdDetA( ata );
362 }
363 else
364 return ctype( 0 );
365 }
366
372 template< int m, int n >
373 static ctype sqrtDetAAT ( const FieldMatrix< ctype, m, n > &A )
374 {
375 using std::abs;
376 using std::sqrt;
377 // These special cases are here not only for speed reasons:
378 // The general implementation aborts if the matrix is almost singular,
379 // and the special implementation provide a stable way to handle that case.
380 if( (n == 2) && (m == 2) )
381 {
382 // Special implementation for 2x2 matrices: faster and more stable
383 return abs( A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ] );
384 }
385 else if( (n == 3) && (m == 3) )
386 {
387 // Special implementation for 3x3 matrices
388 const ctype v0 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 1 ][ 1 ] * A[ 0 ][ 2 ];
389 const ctype v1 = A[ 0 ][ 2 ] * A[ 1 ][ 0 ] - A[ 1 ][ 2 ] * A[ 0 ][ 0 ];
390 const ctype v2 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 1 ][ 0 ] * A[ 0 ][ 1 ];
391 return abs( v0 * A[ 2 ][ 0 ] + v1 * A[ 2 ][ 1 ] + v2 * A[ 2 ][ 2 ] );
392 }
393 else if ( (n == 3) && (m == 2) )
394 {
395 // Special implementation for 2x3 matrices
396 const ctype v0 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 0 ][ 1 ] * A[ 1 ][ 0 ];
397 const ctype v1 = A[ 0 ][ 0 ] * A[ 1 ][ 2 ] - A[ 1 ][ 0 ] * A[ 0 ][ 2 ];
398 const ctype v2 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 0 ][ 2 ] * A[ 1 ][ 1 ];
399 return sqrt( v0*v0 + v1*v1 + v2*v2);
400 }
401 else if( n >= m )
402 {
403 // General case
404 FieldMatrix< ctype, m, m > aat;
405 AAT_L( A, aat );
406 return spdDetA( aat );
407 }
408 else
409 return ctype( 0 );
410 }
411
412 // A^{-1}_L = (A^T A)^{-1} A^T
413 // => A^{-1}_L A = I
414 template< int m, int n >
415 static ctype leftInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
416 {
417 static_assert((m >= n), "Matrix has no left inverse.");
418 FieldMatrix< ctype, n, n > ata;
419 ATA_L( A, ata );
420 const ctype det = spdInvA( ata );
421 ATBT( ata, A, ret );
422 return det;
423 }
424
425 template< int m, int n >
426 static void leftInvAx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &y )
427 {
428 static_assert((m >= n), "Matrix has no left inverse.");
429 FieldMatrix< ctype, n, n > ata;
430 ATx( A, x, y );
431 ATA_L( A, ata );
432 spdInvAx( ata, y );
433 }
434
436 template< int m, int n >
437 static ctype rightInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
438 {
439 static_assert((n >= m), "Matrix has no right inverse.");
440 using std::abs;
441 if( (n == 2) && (m == 2) )
442 {
443 const ctype det = (A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ]);
444 const ctype detInv = ctype( 1 ) / det;
445 ret[ 0 ][ 0 ] = A[ 1 ][ 1 ] * detInv;
446 ret[ 1 ][ 1 ] = A[ 0 ][ 0 ] * detInv;
447 ret[ 1 ][ 0 ] = -A[ 1 ][ 0 ] * detInv;
448 ret[ 0 ][ 1 ] = -A[ 0 ][ 1 ] * detInv;
449 return abs( det );
450 }
451 else
452 {
453 FieldMatrix< ctype, m , m > aat;
454 AAT_L( A, aat );
455 const ctype det = spdInvA( aat );
456 ATBT( A , aat , ret );
457 return det;
458 }
459 }
460
461 template< int m, int n >
462 static bool xTRightInvA ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &y )
463 {
464 static_assert((n >= m), "Matrix has no right inverse.");
465 FieldMatrix< ctype, m, m > aat;
466 Ax( A, x, y );
467 AAT_L( A, aat );
468 // check whether aat is singular and return true if non-singular
469 return spdInvAx( aat, y, true );
470 }
471 };
472
473 } // namespace Impl
474
475
476
482 template< class ct, int mydim, int cdim>
484 {
485 public:
486
488 typedef ct ctype;
489
491 static const int mydimension= mydim;
492
494 static const int coorddimension = cdim;
495
498
501
503 typedef ctype Volume;
504
507
510
513
516
517 private:
520
522
523 // Helper class to compute a matrix pseudo inverse
524 typedef Impl::FieldMatrixHelper< ct > MatrixHelper;
525
526 public:
528 AffineGeometry ( const ReferenceElement &refElement, const GlobalCoordinate &origin,
529 const JacobianTransposed &jt )
530 : refElement_(refElement), origin_(origin), jacobianTransposed_(jt)
531 {
532 integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
533 }
534
537 const JacobianTransposed &jt )
538 : AffineGeometry(ReferenceElements::general( gt ), origin, jt)
539 { }
540
542 template< class CoordVector >
543 AffineGeometry ( const ReferenceElement &refElement, const CoordVector &coordVector )
544 : refElement_(refElement), origin_(coordVector[0])
545 {
546 for( int i = 0; i < mydimension; ++i )
547 jacobianTransposed_[ i ] = coordVector[ i+1 ] - origin_;
548 integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
549 }
550
552 template< class CoordVector >
553 AffineGeometry ( Dune::GeometryType gt, const CoordVector &coordVector )
554 : AffineGeometry(ReferenceElements::general( gt ), coordVector)
555 { }
556
558 bool affine () const { return true; }
559
561 Dune::GeometryType type () const { return refElement_.type(); }
562
564 int corners () const { return refElement_.size( mydimension ); }
565
567 GlobalCoordinate corner ( int i ) const
568 {
569 return global( refElement_.position( i, mydimension ) );
570 }
571
573 GlobalCoordinate center () const { return global( refElement_.position( 0, 0 ) ); }
574
582 {
583 GlobalCoordinate global( origin_ );
584 jacobianTransposed_.umtv( local, global );
585 return global;
586 }
587
602 {
603 LocalCoordinate local;
604 jacobianInverseTransposed_.mtv( global - origin_, local );
605 return local;
606 }
607
618 ctype integrationElement ([[maybe_unused]] const LocalCoordinate &local) const
619 {
620 return integrationElement_;
621 }
622
624 Volume volume () const
625 {
626 return integrationElement_ * refElement_.volume();
627 }
628
635 const JacobianTransposed &jacobianTransposed ([[maybe_unused]] const LocalCoordinate &local) const
636 {
637 return jacobianTransposed_;
638 }
639
646 const JacobianInverseTransposed &jacobianInverseTransposed ([[maybe_unused]] const LocalCoordinate &local) const
647 {
648 return jacobianInverseTransposed_;
649 }
650
657 Jacobian jacobian ([[maybe_unused]] const LocalCoordinate &local) const
658 {
659 return jacobianTransposed_.transposed();
660 }
661
668 JacobianInverse jacobianInverse ([[maybe_unused]] const LocalCoordinate &local) const
669 {
670 return jacobianInverseTransposed_.transposed();
671 }
672
673 friend ReferenceElement referenceElement ( const AffineGeometry &geometry )
674 {
675 return geometry.refElement_;
676 }
677
678 private:
679 ReferenceElement refElement_;
680 GlobalCoordinate origin_;
681 JacobianTransposed jacobianTransposed_;
682 JacobianInverseTransposed jacobianInverseTransposed_;
683 ctype integrationElement_;
684 };
685
686} // namespace Dune
687
688#endif // #ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH
Implementation of the Geometry interface for affine geometries.
Definition: affinegeometry.hh:484
AffineGeometry(const ReferenceElement &refElement, const CoordVector &coordVector)
Create affine geometry from reference element and a vector of vertex coordinates.
Definition: affinegeometry.hh:543
AffineGeometry(Dune::GeometryType gt, const GlobalCoordinate &origin, const JacobianTransposed &jt)
Create affine geometry from GeometryType, one vertex, and the Jacobian matrix.
Definition: affinegeometry.hh:536
FieldVector< ctype, mydimension > LocalCoordinate
Type for local coordinate vector.
Definition: affinegeometry.hh:497
Dune::GeometryType type() const
Obtain the type of the reference element.
Definition: affinegeometry.hh:561
static const int mydimension
Dimension of the geometry.
Definition: affinegeometry.hh:491
AffineGeometry(const ReferenceElement &refElement, const GlobalCoordinate &origin, const JacobianTransposed &jt)
Create affine geometry from reference element, one vertex, and the Jacobian matrix.
Definition: affinegeometry.hh:528
ctype Volume
Type used for volume.
Definition: affinegeometry.hh:503
JacobianInverse jacobianInverse(const LocalCoordinate &local) const
Obtain the Jacobian's inverse.
Definition: affinegeometry.hh:668
AffineGeometry(Dune::GeometryType gt, const CoordVector &coordVector)
Create affine geometry from GeometryType and a vector of vertex coordinates.
Definition: affinegeometry.hh:553
ctype integrationElement(const LocalCoordinate &local) const
Obtain the integration element.
Definition: affinegeometry.hh:618
FieldMatrix< ctype, mydimension, coorddimension > JacobianInverse
Type for the inverse Jacobian matrix.
Definition: affinegeometry.hh:515
FieldMatrix< ctype, coorddimension, mydimension > Jacobian
Type for the Jacobian matrix.
Definition: affinegeometry.hh:512
const JacobianInverseTransposed & jacobianInverseTransposed(const LocalCoordinate &local) const
Obtain the transposed of the Jacobian's inverse.
Definition: affinegeometry.hh:646
FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed
Type for the transposed Jacobian matrix.
Definition: affinegeometry.hh:506
GlobalCoordinate corner(int i) const
Obtain coordinates of the i-th corner.
Definition: affinegeometry.hh:567
int corners() const
Obtain number of corners of the corresponding reference element.
Definition: affinegeometry.hh:564
FieldMatrix< ctype, coorddimension, mydimension > JacobianInverseTransposed
Type for the transposed inverse Jacobian matrix.
Definition: affinegeometry.hh:509
static const int coorddimension
Dimension of the world space.
Definition: affinegeometry.hh:494
GlobalCoordinate global(const LocalCoordinate &local) const
Evaluate the mapping.
Definition: affinegeometry.hh:581
GlobalCoordinate center() const
Obtain the centroid of the mapping's image.
Definition: affinegeometry.hh:573
Jacobian jacobian(const LocalCoordinate &local) const
Obtain the Jacobian.
Definition: affinegeometry.hh:657
ct ctype
Type used for coordinates.
Definition: affinegeometry.hh:488
FieldVector< ctype, coorddimension > GlobalCoordinate
Type for coordinate vector in world space.
Definition: affinegeometry.hh:500
bool affine() const
Always true: this is an affine geometry.
Definition: affinegeometry.hh:558
const JacobianTransposed & jacobianTransposed(const LocalCoordinate &local) const
Obtain the transposed of the Jacobian.
Definition: affinegeometry.hh:635
Volume volume() const
Obtain the volume of the element.
Definition: affinegeometry.hh:624
void mtv(const X &x, Y &y) const
y = A^T x
Definition: densematrix.hh:387
void umtv(const X &x, Y &y) const
y += A^T x
Definition: densematrix.hh:419
FieldMatrix< K, COLS, ROWS > transposed() const
Return transposed of the matrix as FieldMatrix.
Definition: fmatrix.hh:172
vector space out of a tensor product of fields.
Definition: fvector.hh:95
This class provides access to geometric and topological properties of a reference element.
Definition: referenceelement.hh:52
CoordinateField volume() const
obtain the volume of the reference element
Definition: referenceelement.hh:241
decltype(auto) type(int i, int c) const
obtain the type of subentity (i,c)
Definition: referenceelement.hh:171
int size(int c) const
number of subentities of codimension c
Definition: referenceelement.hh:94
decltype(auto) position(int i, int c) const
position of the barycenter of entity (i,c)
Definition: referenceelement.hh:203
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:125
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:158
unspecified-type ReferenceElement
Returns the type of reference element for the argument type T.
Definition: referenceelements.hh:497
Dune namespace.
Definition: alignedallocator.hh:13
Class providing access to the singletons of the reference elements.
Definition: referenceelements.hh:170
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)