Dune Core Modules (2.8.0)

basistest.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_FUNCTIONS_FUNCTIONSPACEBASES_TEST_BASISTEST_HH
4#define DUNE_FUNCTIONS_FUNCTIONSPACEBASES_TEST_BASISTEST_HH
5
6#include <set>
7#include <algorithm>
8#include <string>
9#include <sstream>
10
11#include <dune/common/test/testsuite.hh>
14#include <dune/common/hybridutilities.hh>
15
17
18#include <dune/functions/functionspacebases/concepts.hh>
19
20struct CheckBasisFlag {};
21struct AllowZeroBasisFunctions {};
22
23template<class T, class... S>
24struct IsContained : public std::disjunction<std::is_same<T,S>...>
25{};
26
27
28
29/*
30 * Get string identifier of element
31 */
32template<class Element, class GridView>
33std::string elementStr(const Element& element, const GridView& gridView)
34{
35 std::stringstream s;
36 s << element.type() << "#" << gridView.indexSet().index(element);
37 return s.str();
38}
39
40/*
41 * Check if two multi-indices are consecutive.
42 * This is a used by checkBasisIndexTreeConsistency()
43 */
44template<class MultiIndex>
45bool multiIndicesConsecutive(const MultiIndex& a, const MultiIndex& b)
46{
47 std::size_t i = 0;
48
49 // find largest common prefix
50 for (; (i<a.size()) and (i<b.size()) and (a[i] == b[i]); ++i)
51 {};
52
53 // if b is exhausted but a is not, then b is a strict prefix of a and does not succeed a
54 if ((i<a.size()) and (i==b.size()))
55 return false;
56
57 // if a and b are not exhausted, then the first non-common index must be an increment
58 if ((i<a.size()) and (i<b.size()))
59 {
60 if (b[i] != a[i]+1)
61 return false;
62 ++i;
63 }
64
65 // if b is not exhausted, then the following indices should be zero
66 if (i<b.size())
67 {
68 for (; i<b.size(); ++i)
69 {
70 if (b[i] != 0)
71 return false;
72 }
73 }
74 return true;
75}
76
77
78
79/*
80 * Check if given set of multi-indices is consistent, i.e.,
81 * if it induces a consistent ordered tree. This is used
82 * by checkBasisIndices()
83 */
84template<class MultiIndexSet>
85Dune::TestSuite checkBasisIndexTreeConsistency(const MultiIndexSet& multiIndexSet)
86{
87 Dune::TestSuite test("index tree consistency check");
88
89 using namespace Dune;
90
91 auto it = multiIndexSet.begin();
92 auto end = multiIndexSet.end();
93
94 // get first multi-index
95 auto lastMultiIndex = *it;
96
97 // assert that index is non-empty
98 test.require(lastMultiIndex.size()>0, "multi-index size check")
99 << "empty multi-index found";
100
101 // check if first multi-index is [0,...,0]
102 for (decltype(lastMultiIndex.size()) i = 0; i<lastMultiIndex.size(); ++i)
103 {
104 test.require(lastMultiIndex[i] == 0, "smallest index check")
105 << "smallest index contains non-zero entry " << lastMultiIndex[i] << " in position " << i;
106 }
107
108 ++it;
109 for(; it != end; ++it)
110 {
111 auto multiIndex = *it;
112
113 // assert that index is non-empty
114 test.require(multiIndex.size()>0, "multi-index size check")
115 << "empty multi-index found";
116
117 // assert that indices are consecutive
118 test.check(multiIndicesConsecutive(lastMultiIndex, multiIndex), "consecutive index check")
119 << "multi-indices " << lastMultiIndex << " and " << multiIndex << " are subsequent but not consecutive";
120
121 lastMultiIndex = multiIndex;
122 }
123
124 return test;
125}
126
127
128
129/*
130 * Check consistency of basis.size(prefix)
131 */
132template<class Basis, class MultiIndexSet>
133Dune::TestSuite checkBasisSizeConsistency(const Basis& basis, const MultiIndexSet& multiIndexSet)
134{
135 Dune::TestSuite test("index size consistency check");
136
137 auto prefix = typename Basis::SizePrefix{};
138
139 for(const auto& index : multiIndexSet)
140 {
141 prefix.clear();
142 for (const auto& i: index)
143 {
144 // All indices i collected so far from the multi-index
145 // refer to a non-empty multi-index subtree. Hence the
146 // size must be nonzero and in fact strictly larger than
147 // the next index.
148 auto prefixSize = basis.size(prefix);
149 test.require(prefixSize > i, "basis.size(prefix) subtree check")
150 << "basis.size(" << prefix << ")=" << prefixSize << " but index " << index << " exists";
151
152 // append next index from multi-index
153 prefix.push_back(i);
154 }
155 auto prefixSize = basis.size(prefix);
156 test.require(prefixSize == 0, "basis.size(prefix) leaf check")
157 << "basis.size(" << prefix << ")=" << prefixSize << " but the prefix exists as index";
158 }
159
160 // ToDo: Add check that for basis.size(prefix)==n with i>0
161 // there exist multi-indices of the form (prefix,0,...)...(prefix,n-1,...)
162
163 return test;
164}
165
166
167
168/*
169 * Check indices of basis:
170 * - First store the whole index tree in a set
171 * - Check if this corresponds to a consistent index tree
172 * - Check if index tree is consistent with basis.size(prefix) and basis.dimension()
173 */
174template<class Basis>
175Dune::TestSuite checkBasisIndices(const Basis& basis)
176{
177 Dune::TestSuite test("basis index check");
178
179 using MultiIndex = typename Basis::MultiIndex;
180
181 static_assert(Dune::IsIndexable<MultiIndex>(), "MultiIndex must support operator[]");
182
183 auto compare = [](const auto& a, const auto& b) {
184 return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
185 };
186
187 auto multiIndexSet = std::set<MultiIndex, decltype(compare)>{compare};
188
189 auto localView = basis.localView();
190 for (const auto& e : elements(basis.gridView()))
191 {
192 localView.bind(e);
193
194 test.require(localView.size() <= localView.maxSize(), "localView.size() check")
195 << "localView.size() is " << localView.size() << " but localView.maxSize() is " << localView.maxSize();
196
197 for (decltype(localView.size()) i=0; i< localView.size(); ++i)
198 {
199 auto multiIndex = localView.index(i);
200 for(auto mi: multiIndex)
201 test.check(mi>=0)
202 << "Global multi-index containes negative entry for shape function " << i
203 << " in element " << elementStr(localView.element(), basis.gridView());
204 multiIndexSet.insert(multiIndex);
205 }
206 }
207
208 test.subTest(checkBasisIndexTreeConsistency(multiIndexSet));
209 test.subTest(checkBasisSizeConsistency(basis, multiIndexSet));
210 test.check(basis.dimension() == multiIndexSet.size())
211 << "basis.dimension() does not equal the total number of basis functions.";
212
213 return test;
214}
215
216
217
218/*
219 * Check if shape functions are not constant zero.
220 * This is called by checkLocalView().
221 */
222template<class LocalFiniteElement>
223Dune::TestSuite checkNonZeroShapeFunctions(const LocalFiniteElement& fe, std::size_t order = 5, double tol = 1e-10)
224{
225 Dune::TestSuite test;
226 static const int dimension = LocalFiniteElement::Traits::LocalBasisType::Traits::dimDomain;
227
228 auto quadRule = Dune::QuadratureRules<double, dimension>::rule(fe.type(), order);
229
230 std::vector<typename LocalFiniteElement::Traits::LocalBasisType::Traits::RangeType> values;
231 std::vector<bool> isNonZero;
232 isNonZero.resize(fe.size(), false);
233 for (const auto& qp : quadRule)
234 {
235 fe.localBasis().evaluateFunction(qp.position(), values);
236 for(std::size_t i=0; i<fe.size(); ++i)
237 isNonZero[i] = (isNonZero[i] or (values[i].infinity_norm() > tol));
238 }
239 for(std::size_t i=0; i<fe.size(); ++i)
240 test.check(isNonZero[i])
241 << "Found a constant zero basis function";
242 return test;
243}
244
245
246
247/*
248 * Check localView. This especially checks for
249 * consistency of local indices and local size.
250 */
251template<class Basis, class LocalView, class... Flags>
252Dune::TestSuite checkLocalView(const Basis& basis, const LocalView& localView, Flags... flags)
253{
254 Dune::TestSuite test(std::string("LocalView on ") + elementStr(localView.element(), basis.gridView()));
255
256 test.check(localView.size() <= localView.maxSize(), "localView.size() check")
257 << "localView.size() is " << localView.size() << " but localView.maxSize() is " << localView.maxSize();
258
259 // Count all local indices appearing in the tree.
260 std::vector<std::size_t> localIndices;
261 localIndices.resize(localView.size(), 0);
262 Dune::TypeTree::forEachLeafNode(localView.tree(), [&](const auto& node, auto&& treePath) {
263 test.check(node.size() == node.finiteElement().size())
264 << "Size of leaf node and finite element are different.";
265 for(std::size_t i=0; i<node.size(); ++i)
266 {
267 test.check(node.localIndex(i) < localView.size())
268 << "Local index exceeds localView.size().";
269 if (node.localIndex(i) < localView.size())
270 ++(localIndices[node.localIndex(i)]);
271 }
272 });
273
274 // Check if each local index appears exactly once.
275 for(std::size_t i=0; i<localView.size(); ++i)
276 {
277 if (localIndices[i])
278 test.check(localIndices[i]>=1)
279 << "Local index " << i << " did not appear";
280 test.check(localIndices[i]<=1)
281 << "Local index " << i << " appears multiple times";
282 }
283
284 // Check if all basis functions are non-constant.
285 if (not IsContained<AllowZeroBasisFunctions, Flags...>::value)
286 {
287 Dune::TypeTree::forEachLeafNode(localView.tree(), [&](const auto& node, auto&& treePath) {
288 test.subTest(checkNonZeroShapeFunctions(node.finiteElement()));
289 });
290 }
291
292 return test;
293}
294
295
296// Flag to enable a local continuity check for checking strong
297// continuity across an intersection within checkBasisContinuity().
298//
299// For each inside basis function this will compute the jump against
300// zero or the corresponding inside basis function. The latter is then
301// checked for being (up to a tolerance) zero on a set of quadrature points.
302struct EnableContinuityCheck
303{
304 std::size_t order_ = 5;
305 double tol_ = 1e-10;
306
307 template<class JumpEvaluator>
308 auto localJumpContinuityCheck(const JumpEvaluator& jumpEvaluator, std::size_t order, double tol) const
309 {
310 return [=](const auto& intersection, const auto& treePath, const auto& insideNode, const auto& outsideNode, const auto& insideToOutside) {
311 using Intersection = std::decay_t<decltype(intersection)>;
312 using Node = std::decay_t<decltype(insideNode)>;
313
314 std::vector<int> isContinuous(insideNode.size(), true);
315 const auto& quadRule = Dune::QuadratureRules<double, Intersection::mydimension>::rule(intersection.type(), order);
316
317 using Range = typename Node::FiniteElement::Traits::LocalBasisType::Traits::RangeType;
318 std::vector<std::vector<Range>> values;
319 std::vector<std::vector<Range>> neighborValues;
320
321 // Evaluate inside and outside basis functions.
322 values.resize(quadRule.size());
323 neighborValues.resize(quadRule.size());
324 for(std::size_t k=0; k<quadRule.size(); ++k)
325 {
326 auto pointInElement = intersection.geometryInInside().global(quadRule[k].position());
327 auto pointInNeighbor = intersection.geometryInOutside().global(quadRule[k].position());
328 insideNode.finiteElement().localBasis().evaluateFunction(pointInElement, values[k]);
329 outsideNode.finiteElement().localBasis().evaluateFunction(pointInNeighbor, neighborValues[k]);
330 }
331
332 // Check jump against outside basis function or zero.
333 for(std::size_t i=0; i<insideNode.size(); ++i)
334 {
335 for(std::size_t k=0; k<quadRule.size(); ++k)
336 {
337 auto jump = values[k][i];
338 if (insideToOutside[i].has_value())
339 jump -= neighborValues[k][insideToOutside[i].value()];
340 isContinuous[i] = isContinuous[i] and (jumpEvaluator(jump, intersection, quadRule[k].position()) < tol);
341 }
342 }
343 return isContinuous;
344 };
345 }
346
347 auto localContinuityCheck() const {
348 auto jumpNorm = [](auto&&jump, auto&& intersection, auto&& x) -> double {
349 return jump.infinity_norm();
350 };
351 return localJumpContinuityCheck(jumpNorm, order_, tol_);
352 }
353};
354
355// Flag to enable a local normal-continuity check for checking strong
356// continuity across an intersection within checkBasisContinuity().
357//
358// For each inside basis function this will compute the normal jump against
359// zero or the corresponding inside basis function. The latter is then
360// checked for being (up to a tolerance) zero on a set of quadrature points.
361struct EnableNormalContinuityCheck : public EnableContinuityCheck
362{
363 auto localContinuityCheck() const {
364 auto normalJump = [](auto&&jump, auto&& intersection, auto&& x) -> double {
365 return jump * intersection.unitOuterNormal(x);
366 };
367 return localJumpContinuityCheck(normalJump, order_, tol_);
368 }
369};
370
371// Flag to enable a local tangential-continuity check for checking continuity
372// of tangential parts of a vector-valued basis across an intersection
373// within checkBasisContinuity().
374//
375// For each inside basis function this will compute the tangential jump against
376// zero or the corresponding outside basis function. The jump is then
377// checked for being (up to a tolerance) zero on a set of quadrature points.
378struct EnableTangentialContinuityCheck : public EnableContinuityCheck
379{
380 auto localContinuityCheck() const {
381 auto tangentialJumpNorm = [](auto&&jump, auto&& intersection, auto&& x) -> double {
382 auto tangentialJump = jump - (jump * intersection.unitOuterNormal(x)) * intersection.unitOuterNormal(x);
383 return tangentialJump.two_norm();
384 };
385 return localJumpContinuityCheck(tangentialJumpNorm, order_, tol_);
386 }
387};
388
389// Flag to enable a center continuity check for checking continuity in the
390// center of an intersection within checkBasisContinuity().
391//
392// For each inside basis function this will compute the jump against
393// zero or the corresponding inside basis function. The latter is then
394// checked for being (up to a tolerance) zero in the center of mass
395// of the intersection.
396struct EnableCenterContinuityCheck : public EnableContinuityCheck
397{
398 template<class JumpEvaluator>
399 auto localJumpCenterContinuityCheck(const JumpEvaluator& jumpEvaluator, double tol) const
400 {
401 return [=](const auto& intersection, const auto& treePath, const auto& insideNode, const auto& outsideNode, const auto& insideToOutside) {
402 using Node = std::decay_t<decltype(insideNode)>;
403 using Range = typename Node::FiniteElement::Traits::LocalBasisType::Traits::RangeType;
404
405 std::vector<int> isContinuous(insideNode.size(), true);
406 std::vector<Range> insideValues;
407 std::vector<Range> outsideValues;
408
409 insideNode.finiteElement().localBasis().evaluateFunction(intersection.geometryInInside().center(), insideValues);
410 outsideNode.finiteElement().localBasis().evaluateFunction(intersection.geometryInOutside().center(), outsideValues);
411
412 auto centerLocal = intersection.geometry().local(intersection.geometry().center());
413
414 // Check jump against outside basis function or zero.
415 for(std::size_t i=0; i<insideNode.size(); ++i)
416 {
417 auto jump = insideValues[i];
418 if (insideToOutside[i].has_value())
419 jump -= outsideValues[insideToOutside[i].value()];
420 isContinuous[i] = isContinuous[i] and (jumpEvaluator(jump, intersection, centerLocal) < tol);
421 }
422 return isContinuous;
423 };
424 }
425
426 auto localContinuityCheck() const {
427 auto jumpNorm = [](auto&&jump, auto&& intersection, auto&& x) -> double {
428 return jump.infinity_norm();
429 };
430 return localJumpCenterContinuityCheck(jumpNorm, tol_);
431 }
432};
433
434
435/*
436 * Check if basis functions are continuous across faces.
437 * Continuity is checked by evaluation at a set of quadrature points
438 * from a quadrature rule of given order.
439 * If two basis functions (on neighboring elements) share the same
440 * global index, their values at the quadrature points (located on
441 * their intersection) should coincide up to the given tolerance.
442 *
443 * If a basis function only appears on one side of the intersection,
444 * it should be zero on the intersection.
445 */
446template<class Basis, class LocalCheck>
447Dune::TestSuite checkBasisContinuity(const Basis& basis, const LocalCheck& localCheck)
448{
449 Dune::TestSuite test("Global continuity check of basis functions");
450
451
452 auto localView = basis.localView();
453 auto neighborLocalView = basis.localView();
454
455 for (const auto& e : elements(basis.gridView()))
456 {
457 localView.bind(e);
458 for(const auto& intersection : intersections(basis.gridView(), e))
459 {
460 if (intersection.neighbor())
461 {
462 neighborLocalView.bind(intersection.outside());
463
464 Dune::TypeTree::forEachLeafNode(localView.tree(), [&](const auto& insideNode, auto&& treePath) {
465 const auto& outsideNode = Dune::TypeTree::child(neighborLocalView.tree(), treePath);
466
467 std::vector<std::optional<int>> insideToOutside;
468 insideToOutside.resize(insideNode.size());
469
470 // Map all inside DOFs to outside DOFs if possible
471 for(std::size_t i=0; i<insideNode.size(); ++i)
472 {
473 for(std::size_t j=0; j<outsideNode.size(); ++j)
474 {
475 if (localView.index(insideNode.localIndex(i)) == neighborLocalView.index(outsideNode.localIndex(j)))
476 {
477 // Basis function should only appear once in the neighbor element.
478 test.check(not insideToOutside[i].has_value())
479 << "Basis function " << localView.index(insideNode.localIndex(i))
480 << " appears twice in element " << elementStr(neighborLocalView.element(), basis.gridView());
481 insideToOutside[i] = j;
482 }
483 }
484 }
485
486 // Apply continuity check on given intersection with given inside/outside DOF node pair.
487 auto isContinuous = localCheck(intersection, treePath, insideNode, outsideNode, insideToOutside);
488
489 for(std::size_t i=0; i<insideNode.size(); ++i)
490 {
491 test.check(isContinuous[i])
492 << "Basis function " << localView.index(insideNode.localIndex(i))
493 << " is discontinuous across intersection of elements "
494 << elementStr(localView.element(), basis.gridView())
495 << " and " << elementStr(neighborLocalView.element(), basis.gridView());
496 }
497 });
498 }
499 }
500 }
501 return test;
502}
503
504template<class Basis, class... Flags>
505Dune::TestSuite checkConstBasis(const Basis& basis, Flags... flags)
506{
507 Dune::TestSuite test("const basis check");
508
509 using GridView = typename Basis::GridView;
510
511 // Check if basis models the GlobalBasis concept.
512 test.check(Dune::models<Dune::Functions::Concept::GlobalBasis<GridView>, Basis>(), "global basis concept check")
513 << "type passed to checkBasis() does not model the GlobalBasis concept";
514
515 // Perform all local tests.
516 auto localView = basis.localView();
517 for (const auto& e : elements(basis.gridView()))
518 {
519 localView.bind(e);
520 test.subTest(checkLocalView(basis, localView, flags...));
521 }
522
523 // Perform global index tests.
524 test.subTest(checkBasisIndices(basis));
525
526 // Perform continuity check.
527 // First capture flags in a tuple in order to iterate.
528 auto flagTuple = std::tie(flags...);
529 Dune::Hybrid::forEach(flagTuple, [&](auto&& flag) {
530 using Flag = std::decay_t<decltype(flag)>;
531 if constexpr (std::is_base_of_v<EnableContinuityCheck, Flag>)
532 test.subTest(checkBasisContinuity(basis, flag.localContinuityCheck()));
533 });
534
535 return test;
536}
537
538
539template<class Basis, class... Flags>
540Dune::TestSuite checkBasis(Basis& basis, Flags... flags)
541{
542 Dune::TestSuite test("basis check");
543
544 // Perform tests for a constant basis
545 test.subTest(checkConstBasis(basis,flags...));
546
547 // Check update of gridView
548 auto gridView = basis.gridView();
549 basis.update(gridView);
550
551 return test;
552}
553
554
555
556
557#endif // DUNE_FUNCTIONS_FUNCTIONSPACEBASES_TEST_BASISTEST_HH
Grid view abstract base class.
Definition: gridview.hh:63
Intersection of a mesh entity of codimension 0 ("element") with a "neighboring" element or with the d...
Definition: intersection.hh:162
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:280
Infrastructure for concepts.
Traits for type conversions and type information.
constexpr auto models()
Check if concept is modeled by given types.
Definition: concept.hh:182
IteratorRange<... > intersections(const GV &gv, const Entity &e)
Iterates over all Intersections of an Entity with respect to the given GridView.
IteratorRange<... > elements(const GV &gv)
Iterates over all elements / cells (entities with codimension 0) of a GridView.
constexpr void forEach(Range &&range, F &&f)
Range based for loop.
Definition: hybridutilities.hh:266
constexpr HybridTreePath< T... > treePath(const T &... t)
Constructs a new HybridTreePath from the given indices.
Definition: treepath.hh:188
void forEachLeafNode(Tree &&tree, LeafFunc &&leafFunc)
Traverse tree and visit each leaf node.
Definition: traversal.hh:304
Dune namespace.
Definition: alignedallocator.hh:11
Type trait to determine whether an instance of T has an operator[](I), i.e. whether it can be indexed...
Definition: typetraits.hh:250
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 22, 23:33, 2024)