Dune Core Modules (2.7.1)

raviartthomas2cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH
4#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH
5
6#include <vector>
7
9#include <dune/localfunctions/common/localinterpolation.hh>
10
11namespace Dune
12{
13
22 template<class LB>
24 {
25
26 public:
27
33 RT2Cube2DLocalInterpolation (unsigned int s = 0)
34 {
35 sign0 = sign1 = sign2 = sign3 = 1.0;
36 if (s & 1)
37 {
38 sign0 *= -1.0;
39 }
40 if (s & 2)
41 {
42 sign1 *= -1.0;
43 }
44 if (s & 4)
45 {
46 sign2 *= -1.0;
47 }
48 if (s & 8)
49 {
50 sign3 *= -1.0;
51 }
52
53 n0[0] = -1.0;
54 n0[1] = 0.0;
55 n1[0] = 1.0;
56 n1[1] = 0.0;
57 n2[0] = 0.0;
58 n2[1] = -1.0;
59 n3[0] = 0.0;
60 n3[1] = 1.0;
61 }
62
71 template<typename F, typename C>
72 void interpolate (const F& ff, std::vector<C>& out) const
73 {
74 // f gives v*outer normal at a point on the edge!
75 typedef typename LB::Traits::RangeFieldType Scalar;
76 typedef typename LB::Traits::DomainFieldType Vector;
77
78 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
79
80 out.resize(24);
81 fill(out.begin(), out.end(), 0.0);
82
83 const int qOrder = 6;
85
86 for (typename QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
87 {
88 Scalar qPos = it->position();
89 typename LB::Traits::DomainType localPos;
90
91 localPos[0] = 0.0;
92 localPos[1] = qPos;
93 auto y = f(localPos);
94 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
95 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
96 out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0;
97
98 localPos[0] = 1.0;
99 localPos[1] = qPos;
100 y = f(localPos);
101 out[3] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1;
102 out[4] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
103 out[5] += (y[0]*n1[0] + y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1;
104
105 localPos[0] = qPos;
106 localPos[1] = 0.0;
107 y = f(localPos);
108 out[6] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
109 out[7] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
110 out[8] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2;
111
112 localPos[0] = qPos;
113 localPos[1] = 1.0;
114 y = f(localPos);
115 out[9] += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
116 out[10] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
117 out[11] += (y[0]*n3[0] + y[1]*n3[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign3;
118 }
119
121
122 for (typename QuadratureRule<Vector,2>::const_iterator it = rule2.begin();
123 it != rule2.end(); ++it)
124 {
125 FieldVector<double,2> qPos = it->position();
126
127 auto y = f(qPos);
128 out[12] += y[0]*it->weight();
129 out[13] += y[1]*it->weight();
130 out[14] += y[0]*qPos[0]*it->weight();
131 out[15] += y[1]*qPos[0]*it->weight();
132 out[16] += y[0]*qPos[1]*it->weight();
133 out[17] += y[1]*qPos[1]*it->weight();
134 out[18] += y[0]*qPos[0]*qPos[1]*it->weight();
135 out[19] += y[1]*qPos[0]*qPos[1]*it->weight();
136 out[20] += y[0]*qPos[1]*qPos[1]*it->weight();
137 out[21] += y[1]*qPos[0]*qPos[0]*it->weight();
138 out[22] += y[0]*qPos[0]*qPos[1]*qPos[1]*it->weight();
139 out[23] += y[1]*qPos[0]*qPos[0]*qPos[1]*it->weight();
140 }
141 }
142
143 private:
144 typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
145 typename LB::Traits::DomainType n0, n1, n2, n3;
146 };
147}
148#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:96
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:126
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:254
Second order Raviart-Thomas shape functions on the reference triangle.
Definition: raviartthomas2cube2dlocalinterpolation.hh:24
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas2cube2dlocalinterpolation.hh:72
RT2Cube2DLocalInterpolation(unsigned int s=0)
Make set number s, where 0 <= s < 16.
Definition: raviartthomas2cube2dlocalinterpolation.hh:33
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:775
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:233
Dune namespace.
Definition: alignedallocator.hh:14
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 13, 23:29, 2024)