Dune Core Modules (2.7.1)

multilineargeometry.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
4#define DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
5
6#include <cassert>
7#include <functional>
8#include <iterator>
9#include <limits>
10#include <vector>
11
15
17#include <dune/geometry/referenceelements.hh>
18#include <dune/geometry/type.hh>
19
20namespace Dune
21{
22
23 // MultiLinearGeometryTraits
24 // -------------------------
25
35 template< class ct >
37 {
56 typedef Impl::FieldMatrixHelper< ct > MatrixHelper;
57
59 static ct tolerance () { return ct( 16 ) * std::numeric_limits< ct >::epsilon(); }
60
125 template< int mydim, int cdim >
127 {
128 typedef std::vector< FieldVector< ct, cdim > > Type;
129 };
130
144 template< int dim >
146 {
147 static const bool v = false;
148 static const unsigned int topologyId = ~0u;
149 };
150 };
151
152
153
154 // MultiLinearGeometry
155 // -------------------
156
177 template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
179 {
181
182 public:
184 typedef ct ctype;
185
187 static const int mydimension= mydim;
189 static const int coorddimension = cdim;
190
196 typedef ctype Volume;
197
200
202 class JacobianInverseTransposed;
203
204 protected:
205
207
208 public:
209
212
213 private:
214 static const bool hasSingleGeometryType = Traits::template hasSingleGeometryType< mydimension >::v;
215
216 protected:
217 typedef typename Traits::MatrixHelper MatrixHelper;
218 typedef typename std::conditional< hasSingleGeometryType, std::integral_constant< unsigned int, Traits::template hasSingleGeometryType< mydimension >::topologyId >, unsigned int >::type TopologyId;
219
220 public:
230 template< class Corners >
232 const Corners &corners )
233 : refElement_( refElement ),
234 corners_( corners )
235 {}
236
246 template< class Corners >
248 const Corners &corners )
249 : refElement_( ReferenceElements::general( gt ) ),
250 corners_( corners )
251 {}
252
254 bool affine () const
255 {
257 return affine( jt );
258 }
259
261 Dune::GeometryType type () const { return GeometryType( toUnsignedInt(topologyId()), mydimension ); }
262
264 int corners () const { return refElement().size( mydimension ); }
265
267 GlobalCoordinate corner ( int i ) const
268 {
269 assert( (i >= 0) && (i < corners()) );
270 return std::cref(corners_).get()[ i ];
271 }
272
274 GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }
275
283 {
284 using std::begin;
285
286 auto cit = begin(std::cref(corners_).get());
288 global< false >( topologyId(), std::integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), y );
289 return y;
290 }
291
304 LocalCoordinate local ( const GlobalCoordinate &globalCoord ) const
305 {
306 const ctype tolerance = Traits::tolerance();
307 LocalCoordinate x = refElement().position( 0, 0 );
309 const bool affineMapping = this->affine();
310 do
311 {
312 // Newton's method: DF^n dx^n = F^n, x^{n+1} -= dx^n
313 const GlobalCoordinate dglobal = (*this).global( x ) - globalCoord;
314 const bool invertible =
315 MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed( x ), dglobal, dx );
316 if( ! invertible )
318
319 // update x with correction
320 x -= dx;
321
322 // for affine mappings only one iteration is needed
323 if ( affineMapping ) break;
324 } while( dx.two_norm2() > tolerance );
325 return x;
326 }
327
343 {
344 return MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jacobianTransposed( local ) );
345 }
346
355 Volume volume () const
356 {
357 return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
358 }
359
370 {
371 using std::begin;
372
374 auto cit = begin(std::cref(corners_).get());
375 jacobianTransposed< false >( topologyId(), std::integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), jt );
376 return jt;
377 }
378
385 JacobianInverseTransposed jacobianInverseTransposed ( const LocalCoordinate &local ) const;
386
387 friend ReferenceElement referenceElement ( const MultiLinearGeometry &geometry )
388 {
389 return geometry.refElement();
390 }
391
392 protected:
393
394 ReferenceElement refElement () const
395 {
396 return refElement_;
397 }
398
399 TopologyId topologyId () const
400 {
401 return topologyId( std::integral_constant< bool, hasSingleGeometryType >() );
402 }
403
404 template< bool add, int dim, class CornerIterator >
405 static void global ( TopologyId topologyId, std::integral_constant< int, dim >,
406 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
407 const ctype &rf, GlobalCoordinate &y );
408 template< bool add, class CornerIterator >
409 static void global ( TopologyId topologyId, std::integral_constant< int, 0 >,
410 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
411 const ctype &rf, GlobalCoordinate &y );
412
413 template< bool add, int rows, int dim, class CornerIterator >
414 static void jacobianTransposed ( TopologyId topologyId, std::integral_constant< int, dim >,
415 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
416 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );
417 template< bool add, int rows, class CornerIterator >
418 static void jacobianTransposed ( TopologyId topologyId, std::integral_constant< int, 0 >,
419 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
420 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );
421
422 template< int dim, class CornerIterator >
423 static bool affine ( TopologyId topologyId, std::integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt );
424 template< class CornerIterator >
425 static bool affine ( TopologyId topologyId, std::integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt );
426
427 bool affine ( JacobianTransposed &jacobianT ) const
428 {
429 using std::begin;
430
431 auto cit = begin(std::cref(corners_).get());
432 return affine( topologyId(), std::integral_constant< int, mydimension >(), cit, jacobianT );
433 }
434
435 private:
436 // The following methods are needed to convert the return type of topologyId to
437 // unsigned int with g++-4.4. It has problems casting integral_constant to the
438 // integral type.
439 static unsigned int toUnsignedInt(unsigned int i) { return i; }
440 template<unsigned int v>
441 static unsigned int toUnsignedInt(std::integral_constant<unsigned int,v> i) { return v; }
442 TopologyId topologyId ( std::integral_constant< bool, true > ) const { return TopologyId(); }
443 unsigned int topologyId ( std::integral_constant< bool, false > ) const { return refElement().type().id(); }
444
445 ReferenceElement refElement_;
446 typename Traits::template CornerStorage< mydimension, coorddimension >::Type corners_;
447 };
448
449
450
451 // MultiLinearGeometry::JacobianInverseTransposed
452 // ----------------------------------------------
453
454 template< class ct, int mydim, int cdim, class Traits >
455 class MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed
456 : public FieldMatrix< ctype, coorddimension, mydimension >
457 {
459
460 public:
461 void setup ( const JacobianTransposed &jt )
462 {
463 detInv_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jt, static_cast< Base & >( *this ) );
464 }
465
466 void setupDeterminant ( const JacobianTransposed &jt )
467 {
468 detInv_ = MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jt );
469 }
470
471 ctype det () const { return ctype( 1 ) / detInv_; }
472 ctype detInv () const { return detInv_; }
473
474 private:
475 ctype detInv_;
476 };
477
478
479
492 template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
494 : public MultiLinearGeometry< ct, mydim, cdim, Traits >
495 {
498
499 protected:
500 typedef typename Base::MatrixHelper MatrixHelper;
501
502 public:
503 typedef typename Base::ReferenceElement ReferenceElement;
504
505 typedef typename Base::ctype ctype;
506
507 using Base::mydimension;
509
510 typedef typename Base::LocalCoordinate LocalCoordinate;
512 typedef typename Base::Volume Volume;
513
515 typedef typename Base::JacobianInverseTransposed JacobianInverseTransposed;
516
517 template< class CornerStorage >
518 CachedMultiLinearGeometry ( const ReferenceElement &referenceElement, const CornerStorage &cornerStorage )
519 : Base( referenceElement, cornerStorage ),
520 affine_( Base::affine( jacobianTransposed_ ) ),
521 jacobianInverseTransposedComputed_( false ),
522 integrationElementComputed_( false )
523 {}
524
525 template< class CornerStorage >
526 CachedMultiLinearGeometry ( Dune::GeometryType gt, const CornerStorage &cornerStorage )
527 : Base( gt, cornerStorage ),
528 affine_( Base::affine( jacobianTransposed_ ) ),
529 jacobianInverseTransposedComputed_( false ),
530 integrationElementComputed_( false )
531 {}
532
534 bool affine () const { return affine_; }
535
536 using Base::corner;
537
539 GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }
540
548 {
549 if( affine() )
550 {
552 jacobianTransposed_.umtv( local, global );
553 return global;
554 }
555 else
556 return Base::global( local );
557 }
558
572 {
573 if( affine() )
574 {
575 LocalCoordinate local;
576 if( jacobianInverseTransposedComputed_ )
577 jacobianInverseTransposed_.mtv( global - corner( 0 ), local );
578 else
579 MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed_, global - corner( 0 ), local );
580 return local;
581 }
582 else
583 return Base::local( global );
584 }
585
600 ctype integrationElement ( const LocalCoordinate &local ) const
601 {
602 if( affine() )
603 {
604 if( !integrationElementComputed_ )
605 {
606 jacobianInverseTransposed_.setupDeterminant( jacobianTransposed_ );
607 integrationElementComputed_ = true;
608 }
609 return jacobianInverseTransposed_.detInv();
610 }
611 else
612 return Base::integrationElement( local );
613 }
614
616 Volume volume () const
617 {
618 if( affine() )
619 return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
620 else
621 return Base::volume();
622 }
623
634 {
635 if( affine() )
636 return jacobianTransposed_;
637 else
638 return Base::jacobianTransposed( local );
639 }
640
647 JacobianInverseTransposed jacobianInverseTransposed ( const LocalCoordinate &local ) const
648 {
649 if( affine() )
650 {
651 if( !jacobianInverseTransposedComputed_ )
652 {
653 jacobianInverseTransposed_.setup( jacobianTransposed_ );
654 jacobianInverseTransposedComputed_ = true;
655 integrationElementComputed_ = true;
656 }
657 return jacobianInverseTransposed_;
658 }
659 else
660 return Base::jacobianInverseTransposed( local );
661 }
662
663 protected:
664 using Base::refElement;
665
666 private:
667 mutable JacobianTransposed jacobianTransposed_;
668 mutable JacobianInverseTransposed jacobianInverseTransposed_;
669
670 mutable bool affine_ : 1;
671
672 mutable bool jacobianInverseTransposedComputed_ : 1;
673 mutable bool integrationElementComputed_ : 1;
674 };
675
676
677
678 // Implementation of MultiLinearGeometry
679 // -------------------------------------
680
681 template< class ct, int mydim, int cdim, class Traits >
682 inline typename MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed
684 {
685 JacobianInverseTransposed jit;
686 jit.setup( jacobianTransposed( local ) );
687 return jit;
688 }
689
690
691 template< class ct, int mydim, int cdim, class Traits >
692 template< bool add, int dim, class CornerIterator >
694 ::global ( TopologyId topologyId, std::integral_constant< int, dim >,
695 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
696 const ctype &rf, GlobalCoordinate &y )
697 {
698 const ctype xn = df*x[ dim-1 ];
699 const ctype cxn = ctype( 1 ) - xn;
700
701 if( Impl::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
702 {
703 // apply (1-xn) times mapping for bottom
704 global< add >( topologyId, std::integral_constant< int, dim-1 >(), cit, df, x, rf*cxn, y );
705 // apply xn times mapping for top
706 global< true >( topologyId, std::integral_constant< int, dim-1 >(), cit, df, x, rf*xn, y );
707 }
708 else
709 {
710 assert( Impl::isPyramid( toUnsignedInt(topologyId), mydimension, mydimension-dim ) );
711 // apply (1-xn) times mapping for bottom (with argument x/(1-xn))
712 if( cxn > Traits::tolerance() || cxn < -Traits::tolerance() )
713 global< add >( topologyId, std::integral_constant< int, dim-1 >(), cit, df/cxn, x, rf*cxn, y );
714 else
715 global< add >( topologyId, std::integral_constant< int, dim-1 >(), cit, df, x, ctype( 0 ), y );
716 // apply xn times the tip
717 y.axpy( rf*xn, *cit );
718 ++cit;
719 }
720 }
721
722 template< class ct, int mydim, int cdim, class Traits >
723 template< bool add, class CornerIterator >
725 ::global ( TopologyId topologyId, std::integral_constant< int, 0 >,
726 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
727 const ctype &rf, GlobalCoordinate &y )
728 {
729 const GlobalCoordinate &origin = *cit;
730 ++cit;
731 for( int i = 0; i < coorddimension; ++i )
732 y[ i ] = (add ? y[ i ] + rf*origin[ i ] : rf*origin[ i ]);
733 }
734
735
736 template< class ct, int mydim, int cdim, class Traits >
737 template< bool add, int rows, int dim, class CornerIterator >
739 ::jacobianTransposed ( TopologyId topologyId, std::integral_constant< int, dim >,
740 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
741 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
742 {
743 assert( rows >= dim );
744
745 const ctype xn = df*x[ dim-1 ];
746 const ctype cxn = ctype( 1 ) - xn;
747
748 auto cit2( cit );
749 if( Impl::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
750 {
751 // apply (1-xn) times Jacobian for bottom
752 jacobianTransposed< add >( topologyId, std::integral_constant< int, dim-1 >(), cit2, df, x, rf*cxn, jt );
753 // apply xn times Jacobian for top
754 jacobianTransposed< true >( topologyId, std::integral_constant< int, dim-1 >(), cit2, df, x, rf*xn, jt );
755 // compute last row as difference between top value and bottom value
756 global< add >( topologyId, std::integral_constant< int, dim-1 >(), cit, df, x, -rf, jt[ dim-1 ] );
757 global< true >( topologyId, std::integral_constant< int, dim-1 >(), cit, df, x, rf, jt[ dim-1 ] );
758 }
759 else
760 {
761 assert( Impl::isPyramid( toUnsignedInt(topologyId), mydimension, mydimension-dim ) );
762 /*
763 * In the pyramid case, we need a transformation Tb: B -> R^n for the
764 * base B \subset R^{n-1}. The pyramid transformation is then defined as
765 * T: P \subset R^n -> R^n
766 * (x, xn) |-> (1-xn) Tb(x*) + xn t (x \in R^{n-1}, xn \in R)
767 * with the tip of the pyramid mapped to t and x* = x/(1-xn)
768 * the projection of (x,xn) onto the base.
769 *
770 * For the Jacobi matrix DT we get
771 * DT = ( A | b )
772 * with A = DTb(x*) (n x n-1 matrix)
773 * and b = dT/dxn (n-dim column vector).
774 * Furthermore
775 * b = -Tb(x*) + t + \sum_i dTb/dx_i(x^*) x_i/(1-xn)
776 *
777 * Note that both A and b are not defined in the pyramid tip (x=0, xn=1)!
778 * Indeed for B the unit square, Tb mapping B to the quadrilateral given
779 * by the vertices (0,0,0), (2,0,0), (0,1,0), (1,1,0) and t=(0,0,1), we get
780 *
781 * T(x,y,xn) = ( x(2-y/(1-xn)), y, xn )
782 * / 2-y/(1-xn) -x 0 \
783 * DT(x,y,xn) = | 0 1 0 |
784 * \ 0 0 1 /
785 * which is not continuous for xn -> 1, choose for example
786 * x=0, y=1-xn, xn -> 1 --> DT -> diag(1,1,1)
787 * x=1-xn, y=0, xn -> 1 --> DT -> diag(2,1,1)
788 *
789 * However, for Tb affine-linear, Tb(y) = My + y0, DTb = M:
790 * A = M
791 * b = -M x* - y0 + t + \sum_i M_i x_i/(1-xn)
792 * = -M x* - y0 + t + M x*
793 * = -y0 + t
794 * which is continuous for xn -> 1. Note that this b is also given by
795 * b = -Tb(0) + t + \sum_i dTb/dx_i(0) x_i/1
796 * that is replacing x* by 1 and 1-xn by 1 in the formular above.
797 *
798 * For xn -> 1, we can thus set x*=0, "1-xn"=1 (or anything != 0) and get
799 * the right result in case Tb is affine-linear.
800 */
801
802 /* The second case effectively results in x* = 0 */
803 ctype dfcxn = (cxn > Traits::tolerance() || cxn < -Traits::tolerance()) ? ctype(df / cxn) : ctype(0);
804
805 // initialize last row
806 // b = -Tb(x*)
807 // (b = -Tb(0) = -y0 in case xn -> 1 and Tb affine-linear)
808 global< add >( topologyId, std::integral_constant< int, dim-1 >(), cit, dfcxn, x, -rf, jt[ dim-1 ] );
809 // b += t
810 jt[ dim-1 ].axpy( rf, *cit );
811 ++cit;
812 // apply Jacobian for bottom (with argument x/(1-xn)) and correct last row
813 if( add )
814 {
815 FieldMatrix< ctype, dim-1, coorddimension > jt2;
816 // jt2 = dTb/dx_i(x*)
817 jacobianTransposed< false >( topologyId, std::integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt2 );
818 // A = dTb/dx_i(x*) (jt[j], j=0..dim-1)
819 // b += \sum_i dTb/dx_i(x*) x_i/(1-xn) (jt[dim-1])
820 // (b += 0 in case xn -> 1)
821 for( int j = 0; j < dim-1; ++j )
822 {
823 jt[ j ] += jt2[ j ];
824 jt[ dim-1 ].axpy( dfcxn*x[ j ], jt2[ j ] );
825 }
826 }
827 else
828 {
829 // jt = dTb/dx_i(x*)
830 jacobianTransposed< false >( topologyId, std::integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt );
831 // b += \sum_i dTb/dx_i(x*) x_i/(1-xn)
832 for( int j = 0; j < dim-1; ++j )
833 jt[ dim-1 ].axpy( dfcxn*x[ j ], jt[ j ] );
834 }
835 }
836 }
837
838 template< class ct, int mydim, int cdim, class Traits >
839 template< bool add, int rows, class CornerIterator >
841 ::jacobianTransposed ( TopologyId topologyId, std::integral_constant< int, 0 >,
842 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
843 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
844 {
845 ++cit;
846 }
847
848
849
850 template< class ct, int mydim, int cdim, class Traits >
851 template< int dim, class CornerIterator >
853 ::affine ( TopologyId topologyId, std::integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt )
854 {
855 const GlobalCoordinate &orgBottom = *cit;
856 if( !affine( topologyId, std::integral_constant< int, dim-1 >(), cit, jt ) )
857 return false;
858 const GlobalCoordinate &orgTop = *cit;
859
860 if( Impl::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
861 {
862 JacobianTransposed jtTop;
863 if( !affine( topologyId, std::integral_constant< int, dim-1 >(), cit, jtTop ) )
864 return false;
865
866 // check whether both jacobians are identical
867 ctype norm( 0 );
868 for( int i = 0; i < dim-1; ++i )
869 norm += (jtTop[ i ] - jt[ i ]).two_norm2();
870 if( norm >= Traits::tolerance() )
871 return false;
872 }
873 else
874 ++cit;
875 jt[ dim-1 ] = orgTop - orgBottom;
876 return true;
877 }
878
879 template< class ct, int mydim, int cdim, class Traits >
880 template< class CornerIterator >
882 ::affine ( TopologyId topologyId, std::integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt )
883 {
884 ++cit;
885 return true;
886 }
887
888} // namespace Dune
889
890#endif // #ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
An implementation of the Geometry interface for affine geometries.
Implement a MultiLinearGeometry with additional caching.
Definition: multilineargeometry.hh:495
GlobalCoordinate global(const LocalCoordinate &local) const
evaluate the mapping
Definition: multilineargeometry.hh:547
bool affine() const
is this mapping affine?
Definition: multilineargeometry.hh:534
JacobianTransposed jacobianTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian
Definition: multilineargeometry.hh:633
GlobalCoordinate corner(int i) const
obtain coordinates of the i-th corner
Definition: multilineargeometry.hh:267
Volume volume() const
obtain the volume of the mapping's image
Definition: multilineargeometry.hh:616
ctype integrationElement(const LocalCoordinate &local) const
obtain the integration element
Definition: multilineargeometry.hh:600
GlobalCoordinate center() const
obtain the centroid of the mapping's image
Definition: multilineargeometry.hh:539
JacobianInverseTransposed jacobianInverseTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian's inverse
Definition: multilineargeometry.hh:647
void umtv(const X &x, Y &y) const
y += A^T x
Definition: densematrix.hh:446
FieldTraits< value_type >::real_type two_norm2() const
square of two norm (sum over squared values of entries), need for block recursion
Definition: densevector.hh:651
vector space out of a tensor product of fields.
Definition: fvector.hh:96
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:279
generic geometry implementation based on corner coordinates
Definition: multilineargeometry.hh:179
static const int mydimension
geometry dimension
Definition: multilineargeometry.hh:187
Dune::GeometryType type() const
obtain the name of the reference element
Definition: multilineargeometry.hh:261
FieldVector< ctype, coorddimension > GlobalCoordinate
type of global coordinates
Definition: multilineargeometry.hh:194
JacobianTransposed jacobianTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian
Definition: multilineargeometry.hh:369
GlobalCoordinate global(const LocalCoordinate &local) const
evaluate the mapping
Definition: multilineargeometry.hh:282
GlobalCoordinate center() const
obtain the centroid of the mapping's image
Definition: multilineargeometry.hh:274
GlobalCoordinate corner(int i) const
obtain coordinates of the i-th corner
Definition: multilineargeometry.hh:267
ct ctype
coordinate type
Definition: multilineargeometry.hh:184
static const int coorddimension
coordinate dimension
Definition: multilineargeometry.hh:189
int corners() const
obtain number of corners of the corresponding reference element
Definition: multilineargeometry.hh:264
Volume volume() const
obtain the volume of the mapping's image
Definition: multilineargeometry.hh:355
FieldVector< ctype, mydimension > LocalCoordinate
type of local coordinates
Definition: multilineargeometry.hh:192
MultiLinearGeometry(const ReferenceElement &refElement, const Corners &corners)
constructor
Definition: multilineargeometry.hh:231
ctype Volume
type of volume
Definition: multilineargeometry.hh:196
MultiLinearGeometry(Dune::GeometryType gt, const Corners &corners)
constructor
Definition: multilineargeometry.hh:247
ctype integrationElement(const LocalCoordinate &local) const
obtain the integration element
Definition: multilineargeometry.hh:342
FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed
type of jacobian transposed
Definition: multilineargeometry.hh:199
ReferenceElements::ReferenceElement ReferenceElement
type of reference element
Definition: multilineargeometry.hh:211
JacobianInverseTransposed jacobianInverseTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian's inverse
Definition: multilineargeometry.hh:683
bool affine() const
is this mapping affine?
Definition: multilineargeometry.hh:254
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:156
unspecified value type referenceElement(T &&... t)
Returns a reference element for the objects t....
unspecified-type ReferenceElement
Returns the type of reference element for the argument type T.
Definition: referenceelements.hh:495
auto max(ADLTag< 0 >, const V &v1, const V &v2)
implements binary Simd::max()
Definition: defaults.hh:79
Dune namespace.
Definition: alignedallocator.hh:14
Class providing access to the singletons of the reference elements.
Definition: referenceelements.hh:168
typename Container::ReferenceElement ReferenceElement
The reference element type.
Definition: referenceelements.hh:186
template specifying the storage for the corners
Definition: multilineargeometry.hh:127
will there be only one geometry type for a dimension?
Definition: multilineargeometry.hh:146
default traits class for MultiLinearGeometry
Definition: multilineargeometry.hh:37
Impl::FieldMatrixHelper< ct > MatrixHelper
helper structure containing some matrix routines
Definition: multilineargeometry.hh:56
static ct tolerance()
tolerance to numerical algorithms
Definition: multilineargeometry.hh:59
A unique label for each type of element that can occur in a grid.
Traits for type conversions and type information.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)