Dune Core Modules (2.7.1)

fastamg.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_ISTL_FASTAMG_HH
4#define DUNE_ISTL_FASTAMG_HH
5
6#include <memory>
13#include <dune/istl/solvers.hh>
15#include <dune/istl/superlu.hh>
16#include <dune/istl/umfpack.hh>
18#include <dune/istl/io.hh>
20
21#include "fastamgsmoother.hh"
22
31namespace Dune
32{
33 namespace Amg
34 {
57 template<class M, class X, class PI=SequentialInformation, class A=std::allocator<X> >
58 class FastAMG : public Preconditioner<X,X>
59 {
60 public:
62 typedef M Operator;
74
76 typedef X Domain;
78 typedef X Range;
81
89 FastAMG(OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
90 const Parameters& parms,
91 bool symmetric=true);
92
104 template<class C>
105 FastAMG(const Operator& fineOperator, const C& criterion,
106 const Parameters& parms=Parameters(),
107 bool symmetric=true,
109
113 FastAMG(const FastAMG& amg);
114
116 void pre(Domain& x, Range& b);
117
119 void apply(Domain& v, const Range& d);
120
123 {
125 }
126
128 void post(Domain& x);
129
134 template<class A1>
135 void getCoarsestAggregateNumbers(std::vector<std::size_t,A1>& cont);
136
137 std::size_t levels();
138
139 std::size_t maxlevels();
140
150 {
151 matrices_->recalculateGalerkin(NegateSet<typename PI::OwnerSet>());
152 }
153
158 bool usesDirectCoarseLevelSolver() const;
159
160 private:
167 template<class C>
168 void createHierarchies(C& criterion,
169 const std::shared_ptr<const Operator>& matrixptr,
170 const PI& pinfo);
171
178 struct LevelContext
179 {
191 typename OperatorHierarchy::RedistributeInfoList::const_iterator redist;
195 typename OperatorHierarchy::AggregatesMapList::const_iterator aggregates;
211 std::size_t level;
212 };
213
215 void mgc(LevelContext& levelContext, Domain& x, const Range& b);
216
223 void presmooth(LevelContext& levelContext, Domain& x, const Range& b);
224
231 void postsmooth(LevelContext& levelContext, Domain& x, const Range& b);
232
239 void moveToFineLevel(LevelContext& levelContext, bool processedFineLevel,
240 Domain& fineX);
241
246 bool moveToCoarseLevel(LevelContext& levelContext);
247
252 void initIteratorsWithFineLevel(LevelContext& levelContext);
253
255 std::shared_ptr<OperatorHierarchy> matrices_;
257 std::shared_ptr<CoarseSolver> solver_;
259 std::shared_ptr<Hierarchy<Range,A>> rhs_;
261 std::shared_ptr<Hierarchy<Domain,A>> lhs_;
263 std::shared_ptr<Hierarchy<Domain,A>> residual_;
264
268 std::shared_ptr<ScalarProduct> scalarProduct_;
270 std::size_t gamma_;
272 std::size_t preSteps_;
274 std::size_t postSteps_;
275 std::size_t level;
276 bool buildHierarchy_;
277 bool symmetric;
278 bool coarsesolverconverged;
280 typedef std::shared_ptr<Smoother> SmootherPointer;
281 SmootherPointer coarseSmoother_;
283 std::size_t verbosity_;
284 };
285
286 template<class M, class X, class PI, class A>
288 : matrices_(amg.matrices_), solver_(amg.solver_),
289 rhs_(), lhs_(), residual_(), scalarProduct_(amg.scalarProduct_),
290 gamma_(amg.gamma_), preSteps_(amg.preSteps_), postSteps_(amg.postSteps_),
291 symmetric(amg.symmetric), coarsesolverconverged(amg.coarsesolverconverged),
292 coarseSmoother_(amg.coarseSmoother_), verbosity_(amg.verbosity_)
293 {}
294
295 template<class M, class X, class PI, class A>
297 const Parameters& parms, bool symmetric_)
298 : matrices_(stackobject_to_shared_ptr(matrices)), solver_(&coarseSolver),
299 rhs_(), lhs_(), residual_(), scalarProduct_(),
300 gamma_(parms.getGamma()), preSteps_(parms.getNoPreSmoothSteps()),
301 postSteps_(parms.getNoPostSmoothSteps()), buildHierarchy_(false),
302 symmetric(symmetric_), coarsesolverconverged(true),
303 coarseSmoother_(), verbosity_(parms.debugLevel())
304 {
305 if(preSteps_>1||postSteps_>1)
306 {
307 std::cerr<<"WARNING only one step of smoothing is supported!"<<std::endl;
308 preSteps_=postSteps_=0;
309 }
310 assert(matrices_->isBuilt());
311 static_assert(std::is_same<PI,SequentialInformation>::value,
312 "Currently only sequential runs are supported");
313 }
314 template<class M, class X, class PI, class A>
315 template<class C>
317 const C& criterion,
318 const Parameters& parms,
319 bool symmetric_,
320 const PI& pinfo)
321 : solver_(), rhs_(), lhs_(), residual_(), scalarProduct_(), gamma_(parms.getGamma()),
322 preSteps_(parms.getNoPreSmoothSteps()), postSteps_(parms.getNoPostSmoothSteps()),
323 buildHierarchy_(true),
324 symmetric(symmetric_), coarsesolverconverged(true),
325 coarseSmoother_(), verbosity_(criterion.debugLevel())
326 {
327 if(preSteps_>1||postSteps_>1)
328 {
329 std::cerr<<"WARNING only one step of smoothing is supported!"<<std::endl;
330 preSteps_=postSteps_=1;
331 }
332 static_assert(std::is_same<PI,SequentialInformation>::value,
333 "Currently only sequential runs are supported");
334 // TODO: reestablish compile time checks.
335 //static_assert(static_cast<int>(PI::category)==static_cast<int>(S::category),
336 // "Matrix and Solver must match in terms of category!");
337 auto matrixptr = stackobject_to_shared_ptr(matrix);
338 createHierarchies(criterion, matrixptr, pinfo);
339 }
340
341 template<class M, class X, class PI, class A>
342 template<class C>
343 void FastAMG<M,X,PI,A>::createHierarchies(C& criterion,
344 const std::shared_ptr<const Operator>& matrixptr,
345 const PI& pinfo)
346 {
347 Timer watch;
348 matrices_ = std::make_shared<OperatorHierarchy>(
349 std::const_pointer_cast<Operator>(matrixptr),
350 stackobject_to_shared_ptr(const_cast<PI&>(pinfo)));
351
352 matrices_->template build<NegateSet<typename PI::OwnerSet> >(criterion);
353
354 if(verbosity_>0 && matrices_->parallelInformation().finest()->communicator().rank()==0)
355 std::cout<<"Building Hierarchy of "<<matrices_->maxlevels()<<" levels took "<<watch.elapsed()<<" seconds."<<std::endl;
356
357 if(buildHierarchy_ && matrices_->levels()==matrices_->maxlevels()) {
358 // We have the carsest level. Create the coarse Solver
359 typedef typename SmootherTraits<Smoother>::Arguments SmootherArgs;
360 SmootherArgs sargs;
361 sargs.iterations = 1;
362
364 cargs.setArgs(sargs);
365 if(matrices_->redistributeInformation().back().isSetup()) {
366 // Solve on the redistributed partitioning
367 cargs.setMatrix(matrices_->matrices().coarsest().getRedistributed().getmat());
368 cargs.setComm(matrices_->parallelInformation().coarsest().getRedistributed());
369 }else{
370 cargs.setMatrix(matrices_->matrices().coarsest()->getmat());
371 cargs.setComm(*matrices_->parallelInformation().coarsest());
372 }
373
374 coarseSmoother_ = ConstructionTraits<Smoother>::construct(cargs);
375 scalarProduct_ = createScalarProduct<X>(cargs.getComm(),category());
376
377#if HAVE_SUPERLU|| HAVE_SUITESPARSE_UMFPACK
378#if HAVE_SUITESPARSE_UMFPACK
379#define DIRECTSOLVER UMFPack
380#else
381#define DIRECTSOLVER SuperLU
382#endif
383 // Use superlu if we are purely sequential or with only one processor on the coarsest level.
384 if(std::is_same<ParallelInformation,SequentialInformation>::value // sequential mode
385 || matrices_->parallelInformation().coarsest()->communicator().size()==1 //parallel mode and only one processor
386 || (matrices_->parallelInformation().coarsest().isRedistributed()
387 && matrices_->parallelInformation().coarsest().getRedistributed().communicator().size()==1
388 && matrices_->parallelInformation().coarsest().getRedistributed().communicator().size()>0)) { // redistribute and 1 proc
389 if(verbosity_>0 && matrices_->parallelInformation().coarsest()->communicator().rank()==0)
390 std::cout<<"Using superlu"<<std::endl;
391 if(matrices_->parallelInformation().coarsest().isRedistributed())
392 {
393 if(matrices_->matrices().coarsest().getRedistributed().getmat().N()>0)
394 // We are still participating on this level
395 solver_.reset(new DIRECTSOLVER<typename M::matrix_type>(matrices_->matrices().coarsest().getRedistributed().getmat(), false, false));
396 else
397 solver_.reset();
398 }else
399 solver_.reset(new DIRECTSOLVER<typename M::matrix_type>(matrices_->matrices().coarsest()->getmat(), false, false));
400 }else
401#undef DIRECTSOLVER
402#endif // HAVE_SUPERLU|| HAVE_SUITESPARSE_UMFPACK
403 {
404 if(matrices_->parallelInformation().coarsest().isRedistributed())
405 {
406 if(matrices_->matrices().coarsest().getRedistributed().getmat().N()>0)
407 // We are still participating on this level
408 solver_.reset(new BiCGSTABSolver<X>(const_cast<M&>(matrices_->matrices().coarsest().getRedistributed()),
409 *scalarProduct_,
410 *coarseSmoother_, 1E-2, 1000, 0));
411 else
412 solver_.reset();
413 }else
414 solver_.reset(new BiCGSTABSolver<X>(const_cast<M&>(*matrices_->matrices().coarsest()),
415 *scalarProduct_,
416 *coarseSmoother_, 1E-2, 1000, 0));
417 }
418 }
419
420 if(verbosity_>0 && matrices_->parallelInformation().finest()->communicator().rank()==0)
421 std::cout<<"Building Hierarchy of "<<matrices_->maxlevels()<<" levels took "<<watch.elapsed()<<" seconds."<<std::endl;
422 }
423
424
425 template<class M, class X, class PI, class A>
427 {
428 Timer watch, watch1;
429 // Detect Matrix rows where all offdiagonal entries are
430 // zero and set x such that A_dd*x_d=b_d
431 // Thus users can be more careless when setting up their linear
432 // systems.
433 typedef typename M::matrix_type Matrix;
434 typedef typename Matrix::ConstRowIterator RowIter;
435 typedef typename Matrix::ConstColIterator ColIter;
436 typedef typename Matrix::block_type Block;
437 Block zero;
438 zero=typename Matrix::field_type();
439
440 const Matrix& mat=matrices_->matrices().finest()->getmat();
441 for(RowIter row=mat.begin(); row!=mat.end(); ++row) {
442 bool isDirichlet = true;
443 bool hasDiagonal = false;
444 ColIter diag;
445 for(ColIter col=row->begin(); col!=row->end(); ++col) {
446 if(row.index()==col.index()) {
447 diag = col;
448 hasDiagonal = (*col != zero);
449 }else{
450 if(*col!=zero)
451 isDirichlet = false;
452 }
453 }
454 if(isDirichlet && hasDiagonal)
455 diag->solve(x[row.index()], b[row.index()]);
456 }
457 if (verbosity_>0)
458 std::cout<<" Preprocessing Dirichlet took "<<watch1.elapsed()<<std::endl;
459 watch1.reset();
460 // No smoother to make x consistent! Do it by hand
461 matrices_->parallelInformation().coarsest()->copyOwnerToAll(x,x);
462 rhs_ = std::make_shared<Hierarchy<Range,A>>(std::make_shared<Range>(b));
463 lhs_ = std::make_shared<Hierarchy<Domain,A>>(std::make_shared<Domain>(x));
464 residual_ = std::make_shared<Hierarchy<Domain,A>>(std::make_shared<Domain>(x));
465 matrices_->coarsenVector(*rhs_);
466 matrices_->coarsenVector(*lhs_);
467 matrices_->coarsenVector(*residual_);
468
469 // The preconditioner might change x and b. So we have to
470 // copy the changes to the original vectors.
471 x = *lhs_->finest();
472 b = *rhs_->finest();
473 }
474 template<class M, class X, class PI, class A>
475 std::size_t FastAMG<M,X,PI,A>::levels()
476 {
477 return matrices_->levels();
478 }
479 template<class M, class X, class PI, class A>
480 std::size_t FastAMG<M,X,PI,A>::maxlevels()
481 {
482 return matrices_->maxlevels();
483 }
484
486 template<class M, class X, class PI, class A>
488 {
489 LevelContext levelContext;
490 // Init all iterators for the current level
491 initIteratorsWithFineLevel(levelContext);
492
493 assert(v.two_norm()==0);
494
495 level=0;
496 if(matrices_->maxlevels()==1){
497 // The coarse solver might modify the d!
498 Range b(d);
499 mgc(levelContext, v, b);
500 }else
501 mgc(levelContext, v, d);
502 if(postSteps_==0||matrices_->maxlevels()==1)
503 levelContext.pinfo->copyOwnerToAll(v, v);
504 }
505
506 template<class M, class X, class PI, class A>
507 void FastAMG<M,X,PI,A>::initIteratorsWithFineLevel(LevelContext& levelContext)
508 {
509 levelContext.matrix = matrices_->matrices().finest();
510 levelContext.pinfo = matrices_->parallelInformation().finest();
511 levelContext.redist =
512 matrices_->redistributeInformation().begin();
513 levelContext.aggregates = matrices_->aggregatesMaps().begin();
514 levelContext.lhs = lhs_->finest();
515 levelContext.residual = residual_->finest();
516 levelContext.rhs = rhs_->finest();
517 levelContext.level=0;
518 }
519
520 template<class M, class X, class PI, class A>
521 bool FastAMG<M,X,PI,A>
522 ::moveToCoarseLevel(LevelContext& levelContext)
523 {
524 bool processNextLevel=true;
525
526 if(levelContext.redist->isSetup()) {
527 throw "bla";
528 levelContext.redist->redistribute(static_cast<const Range&>(*levelContext.residual),
529 levelContext.residual.getRedistributed());
530 processNextLevel = levelContext.residual.getRedistributed().size()>0;
531 if(processNextLevel) {
532 //restrict defect to coarse level right hand side.
533 ++levelContext.pinfo;
534 Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
535 ::restrictVector(*(*levelContext.aggregates), *levelContext.rhs,
536 static_cast<const Range&>(levelContext.residual.getRedistributed()),
537 *levelContext.pinfo);
538 }
539 }else{
540 //restrict defect to coarse level right hand side.
541 ++levelContext.rhs;
542 ++levelContext.pinfo;
543 Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
544 ::restrictVector(*(*levelContext.aggregates), *levelContext.rhs,
545 static_cast<const Range&>(*levelContext.residual), *levelContext.pinfo);
546 }
547
548 if(processNextLevel) {
549 // prepare coarse system
550 ++levelContext.residual;
551 ++levelContext.lhs;
552 ++levelContext.matrix;
553 ++levelContext.level;
554 ++levelContext.redist;
555
556 if(levelContext.matrix != matrices_->matrices().coarsest() || matrices_->levels()<matrices_->maxlevels()) {
557 // next level is not the globally coarsest one
558 ++levelContext.aggregates;
559 }
560 // prepare the lhs on the next level
561 *levelContext.lhs=0;
562 *levelContext.residual=0;
563 }
564 return processNextLevel;
565 }
566
567 template<class M, class X, class PI, class A>
568 void FastAMG<M,X,PI,A>
569 ::moveToFineLevel(LevelContext& levelContext, bool processNextLevel, Domain& x)
570 {
571 if(processNextLevel) {
572 if(levelContext.matrix != matrices_->matrices().coarsest() || matrices_->levels()<matrices_->maxlevels()) {
573 // previous level is not the globally coarsest one
574 --levelContext.aggregates;
575 }
576 --levelContext.redist;
577 --levelContext.level;
578 //prolongate and add the correction (update is in coarse left hand side)
579 --levelContext.matrix;
580 --levelContext.residual;
581
582 }
583
584 typename Hierarchy<Domain,A>::Iterator coarseLhs = levelContext.lhs--;
585 if(levelContext.redist->isSetup()) {
586
587 // Need to redistribute during prolongate
588 Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
589 ::prolongateVector(*(*levelContext.aggregates), *coarseLhs, x,
590 levelContext.lhs.getRedistributed(),
591 matrices_->getProlongationDampingFactor(),
592 *levelContext.pinfo, *levelContext.redist);
593 }else{
594 Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
595 ::prolongateVector(*(*levelContext.aggregates), *coarseLhs, x,
596 matrices_->getProlongationDampingFactor(), *levelContext.pinfo);
597
598 // printvector(std::cout, *lhs, "prolongated coarse grid correction", "lhs", 10, 10, 10);
599 }
600
601
602 if(processNextLevel) {
603 --levelContext.rhs;
604 }
605
606 }
607
608
609 template<class M, class X, class PI, class A>
610 void FastAMG<M,X,PI,A>
611 ::presmooth(LevelContext& levelContext, Domain& x, const Range& b)
612 {
614 x,
615 *levelContext.residual,
616 b);
617 }
618
619 template<class M, class X, class PI, class A>
620 void FastAMG<M,X,PI,A>
621 ::postsmooth(LevelContext& levelContext, Domain& x, const Range& b)
622 {
624 ::apply(levelContext.matrix->getmat(), x, *levelContext.residual, b);
625 }
626
627
628 template<class M, class X, class PI, class A>
630 {
631 return IsDirectSolver< CoarseSolver>::value;
632 }
633
634 template<class M, class X, class PI, class A>
635 void FastAMG<M,X,PI,A>::mgc(LevelContext& levelContext, Domain& v, const Range& b){
636
637 if(levelContext.matrix == matrices_->matrices().coarsest() && levels()==maxlevels()) {
638 // Solve directly
640 res.converged=true; // If we do not compute this flag will not get updated
641 if(levelContext.redist->isSetup()) {
642 levelContext.redist->redistribute(b, levelContext.rhs.getRedistributed());
643 if(levelContext.rhs.getRedistributed().size()>0) {
644 // We are still participating in the computation
645 levelContext.pinfo.getRedistributed().copyOwnerToAll(levelContext.rhs.getRedistributed(),
646 levelContext.rhs.getRedistributed());
647 solver_->apply(levelContext.lhs.getRedistributed(), levelContext.rhs.getRedistributed(), res);
648 }
649 levelContext.redist->redistributeBackward(v, levelContext.lhs.getRedistributed());
650 levelContext.pinfo->copyOwnerToAll(v, v);
651 }else{
652 levelContext.pinfo->copyOwnerToAll(b, b);
653 solver_->apply(v, const_cast<Range&>(b), res);
654 }
655
656 // printvector(std::cout, *lhs, "coarse level update", "u", 10, 10, 10);
657 // printvector(std::cout, *rhs, "coarse level rhs", "rhs", 10, 10, 10);
658 if (!res.converged)
659 coarsesolverconverged = false;
660 }else{
661 // presmoothing
662 presmooth(levelContext, v, b);
663 // printvector(std::cout, *lhs, "update", "u", 10, 10, 10);
664 // printvector(std::cout, *residual, "post presmooth residual", "r", 10);
665#ifndef DUNE_AMG_NO_COARSEGRIDCORRECTION
666 bool processNextLevel = moveToCoarseLevel(levelContext);
667
668 if(processNextLevel) {
669 // next level
670 for(std::size_t i=0; i<gamma_; i++)
671 mgc(levelContext, *levelContext.lhs, *levelContext.rhs);
672 }
673
674 moveToFineLevel(levelContext, processNextLevel, v);
675#else
676 *lhs=0;
677#endif
678
679 if(levelContext.matrix == matrices_->matrices().finest()) {
680 coarsesolverconverged = matrices_->parallelInformation().finest()->communicator().prod(coarsesolverconverged);
681 if(!coarsesolverconverged)
682 DUNE_THROW(MathError, "Coarse solver did not converge");
683 }
684
685 postsmooth(levelContext, v, b);
686 }
687 }
688
689
691 template<class M, class X, class PI, class A>
693 {
695 lhs_=nullptr;
696 rhs_=nullptr;
697 residual_=nullptr;
698 }
699
700 template<class M, class X, class PI, class A>
701 template<class A1>
702 void FastAMG<M,X,PI,A>::getCoarsestAggregateNumbers(std::vector<std::size_t,A1>& cont)
703 {
704 matrices_->getCoarsestAggregatesOnFinest(cont);
705 }
706
707 } // end namespace Amg
708} // end namespace Dune
709
710#endif
A fast (sequential) algebraic multigrid based on agglomeration that saves memory bandwidth.
Definition: fastamg.hh:59
LevelIterator< Hierarchy< ParallelInformation, Allocator >, ParallelInformation > Iterator
Type of the mutable iterator.
Definition: hierarchy.hh:215
LevelIterator< const Hierarchy< MatrixOperator, Allocator >, const MatrixOperator > ConstIterator
Type of the const iterator.
Definition: hierarchy.hh:218
The hierarchies build by the coarsening process.
Definition: matrixhierarchy.hh:59
All parameters for AMG.
Definition: parameters.hh:391
ConstIterator class for sequential access.
Definition: matrix.hh:401
A generic dynamic dense matrix.
Definition: matrix.hh:558
typename Imp::BlockTraits< T >::field_type field_type
Export the type representing the underlying field.
Definition: matrix.hh:562
row_type::const_iterator ConstColIterator
Const iterator for the entries of each row.
Definition: matrix.hh:586
T block_type
Export the type representing the components.
Definition: matrix.hh:565
The negation of a set. An item is contained in the set if and only if it is not contained in the nega...
Definition: enumset.hh:95
Base class for matrix free definition of preconditioners.
Definition: preconditioner.hh:30
Base class for scalar product and norm computation.
Definition: scalarproducts.hh:48
Sequential SSOR preconditioner.
Definition: preconditioners.hh:138
A simple stop watch.
Definition: timer.hh:41
void reset() noexcept
Reset timer while keeping the running/stopped state.
Definition: timer.hh:55
double elapsed() const noexcept
Get elapsed user-time from last reset until now/last stop in seconds.
Definition: timer.hh:75
A few common exception classes.
Some generic functions for pretty printing vectors and matrices.
decltype(auto) apply(F &&f, ArgTuple &&args)
Apply function with arguments given as tuple.
Definition: apply.hh:46
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentionally unused function parameters with.
Definition: unused.hh:25
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
OperatorHierarchy::ParallelMatrixHierarchy::ConstIterator matrix
The iterator over the matrices.
Definition: fastamg.hh:183
void getCoarsestAggregateNumbers(std::vector< std::size_t, A1 > &cont)
Get the aggregate number of each unknown on the coarsest level.
Definition: fastamg.hh:702
ParallelInformationHierarchy::Iterator pinfo
The iterator over the parallel information.
Definition: fastamg.hh:187
void recalculateHierarchy()
Recalculate the matrix hierarchy.
Definition: fastamg.hh:149
void post(Domain &x)
Clean up.
Definition: fastamg.hh:692
X Domain
The domain type.
Definition: fastamg.hh:76
Hierarchy< Domain, A >::Iterator residual
The iterator over the residuals.
Definition: fastamg.hh:203
virtual SolverCategory::Category category() const
Category of the preconditioner (see SolverCategory::Category)
Definition: fastamg.hh:122
MatrixHierarchy< M, ParallelInformation, A > OperatorHierarchy
The operator hierarchy type.
Definition: fastamg.hh:71
OperatorHierarchy::RedistributeInfoList::const_iterator redist
The iterator over the redistribution information.
Definition: fastamg.hh:191
X Range
The range type.
Definition: fastamg.hh:78
PI ParallelInformation
The type of the parallel information. Either OwnerOverlapCommunication or another type describing the...
Definition: fastamg.hh:69
M Operator
The matrix operator type.
Definition: fastamg.hh:62
InverseOperator< X, X > CoarseSolver
the type of the coarse solver.
Definition: fastamg.hh:80
bool usesDirectCoarseLevelSolver() const
Check whether the coarse solver used is a direct solver.
Definition: fastamg.hh:629
Hierarchy< Domain, A >::Iterator lhs
The iterator over the left hand side.
Definition: fastamg.hh:199
Hierarchy< Range, A >::Iterator rhs
The iterator over the right hand sided.
Definition: fastamg.hh:207
std::size_t level
The level index.
Definition: fastamg.hh:211
void apply(Domain &v, const Range &d)
Apply one step of the preconditioner to the system A(v)=d.
Definition: fastamg.hh:487
OperatorHierarchy::ParallelInformationHierarchy ParallelInformationHierarchy
The parallal data distribution hierarchy type.
Definition: fastamg.hh:73
void pre(Domain &x, Range &b)
Prepare the preconditioner.
Definition: fastamg.hh:426
FastAMG(OperatorHierarchy &matrices, CoarseSolver &coarseSolver, const Parameters &parms, bool symmetric=true)
Construct a new amg with a specific coarse solver.
Definition: fastamg.hh:296
OperatorHierarchy::AggregatesMapList::const_iterator aggregates
The iterator over the aggregates maps.
Definition: fastamg.hh:195
void presmooth(LevelContext &levelContext, size_t steps)
Apply pre smoothing on the current level.
Definition: smoother.hh:468
const void * Arguments
A type holding all the arguments needed to call the constructor.
Definition: construction.hh:44
static std::shared_ptr< T > construct(Arguments &args)
Construct an object with the specified arguments.
Definition: construction.hh:52
void postsmooth(LevelContext &levelContext, size_t steps)
Apply post smoothing on the current level.
Definition: smoother.hh:490
Provides a classes representing the hierarchies in AMG.
Dune namespace.
Definition: alignedallocator.hh:14
shared_ptr< T > stackobject_to_shared_ptr(T &t)
Create a shared_ptr for a stack-allocated object.
Definition: shared_ptr.hh:75
Define general preconditioner interface.
Define base class for scalar product and norm.
Classes for the generic construction and application of the smoothers.
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Traits class for getting the attribute class of a smoother.
Definition: smoother.hh:65
Statistics about the application of an inverse operator.
Definition: solver.hh:46
bool converged
True if convergence criterion has been met.
Definition: solver.hh:71
Category
Definition: solvercategory.hh:21
@ sequential
Category for sequential solvers.
Definition: solvercategory.hh:23
Classes for using SuperLU with ISTL matrices.
Prolongation and restriction for amg.
Traits for type conversions and type information.
Classes for using UMFPack with ISTL matrices.
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 13, 23:29, 2024)