Dune Core Modules (2.7.1)

densematrix.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_DENSEMATRIX_HH
4#define DUNE_DENSEMATRIX_HH
5
6#include <cmath>
7#include <cstddef>
8#include <iostream>
9#include <type_traits>
10#include <utility>
11#include <vector>
12
18#include <dune/common/math.hh>
22#include <dune/common/unused.hh>
24
25namespace Dune
26{
27
28 template<typename M> class DenseMatrix;
29
30 template<typename M>
31 struct FieldTraits< DenseMatrix<M> >
32 {
33 typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::field_type field_type;
34 typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::real_type real_type;
35 };
36
37 /*
38 work around a problem of FieldMatrix/FieldVector,
39 there is no unique way to obtain the size of a class
40 */
41 template<class K, int N, int M> class FieldMatrix;
42 template<class K, int N> class FieldVector;
43 namespace {
44 template<class V>
45 struct DUNE_DEPRECATED_MSG("VectorSize is deprecated; please call the 'size()' method directly instead") VectorSize
46 {
47 static typename V::size_type size(const V & v) { return v.size(); }
48 };
49
50 DUNE_NO_DEPRECATED_BEGIN
51 template<class K, int N>
52 struct DUNE_DEPRECATED_MSG("VectorSize is deprecated; please call the 'size()' method directly instead") VectorSize< const FieldVector<K,N> >
53 {
54 typedef FieldVector<K,N> V;
55 static typename V::size_type size(const V & v)
56 {
57 DUNE_UNUSED_PARAMETER(v);
58 return N;
59 }
60 };
61 DUNE_NO_DEPRECATED_END
62 }
63
82 template< class DenseMatrix, class RHS >
83 struct DenseMatrixAssigner;
84
85#ifndef DOXYGEN
86 namespace Impl
87 {
88
89 template< class DenseMatrix, class RHS, class = void >
90 class DenseMatrixAssigner
91 {};
92
93 template< class DenseMatrix, class RHS >
94 class DenseMatrixAssigner< DenseMatrix, RHS, std::enable_if_t< Dune::IsNumber< RHS >::value > >
95 {
96 public:
97 static void apply ( DenseMatrix &denseMatrix, const RHS &rhs )
98 {
99 typedef typename DenseMatrix::field_type field_type;
100 std::fill( denseMatrix.begin(), denseMatrix.end(), static_cast< field_type >( rhs ) );
101 }
102 };
103
104 template< class DenseMatrix, class RHS >
105 class DenseMatrixAssigner< DenseMatrix, RHS, std::enable_if_t< !std::is_same< typename RHS::const_iterator, void >::value
106 && std::is_convertible< typename RHS::const_iterator::value_type, typename DenseMatrix::iterator::value_type >::value > >
107 {
108 public:
109 static void apply ( DenseMatrix &denseMatrix, const RHS &rhs )
110 {
111 DUNE_ASSERT_BOUNDS(rhs.N() == denseMatrix.N());
112 DUNE_ASSERT_BOUNDS(rhs.M() == denseMatrix.M());
113 typename DenseMatrix::iterator tIt = std::begin(denseMatrix);
114 typename RHS::const_iterator sIt = std::begin(rhs);
115 for(; sIt != std::end(rhs); ++tIt, ++sIt)
116 std::copy(std::begin(*sIt), std::end(*sIt), std::begin(*tIt));
117 }
118 };
119
120 } // namespace Impl
121
122
123
124 template< class DenseMatrix, class RHS >
125 struct DenseMatrixAssigner
126 : public Impl::DenseMatrixAssigner< DenseMatrix, RHS >
127 {};
128
129
130 namespace Impl
131 {
132
133 template< class DenseMatrix, class RHS >
134 std::true_type hasDenseMatrixAssigner ( DenseMatrix &, const RHS &, decltype( Dune::DenseMatrixAssigner< DenseMatrix, RHS >::apply( std::declval< DenseMatrix & >(), std::declval< const RHS & >() ) ) * = nullptr );
135
136 std::false_type hasDenseMatrixAssigner ( ... );
137
138 } // namespace Impl
139
140 template< class DenseMatrix, class RHS >
141 struct HasDenseMatrixAssigner
142 : public decltype( Impl::hasDenseMatrixAssigner( std::declval< DenseMatrix & >(), std::declval< const RHS & >() ) )
143 {};
144
145#endif // #ifndef DOXYGEN
146
147
148
150 class FMatrixError : public MathError {};
151
162 template<typename MAT>
163 class DenseMatrix
164 {
165 typedef DenseMatVecTraits<MAT> Traits;
166
167 // Curiously recurring template pattern
168 MAT & asImp() { return static_cast<MAT&>(*this); }
169 const MAT & asImp() const { return static_cast<const MAT&>(*this); }
170
171 template <class>
172 friend class DenseMatrix;
173
174 public:
175 //===== type definitions and constants
176
178 typedef typename Traits::derived_type derived_type;
179
181 typedef typename Traits::value_type value_type;
182
184 typedef typename Traits::value_type field_type;
185
187 typedef typename Traits::value_type block_type;
188
190 typedef typename Traits::size_type size_type;
191
193 typedef typename Traits::row_type row_type;
194
196 typedef typename Traits::row_reference row_reference;
197
199 typedef typename Traits::const_row_reference const_row_reference;
200
202 enum {
204 blocklevel = 1
205 };
206
207 private:
210 using simd_index_type = Simd::Rebind<std::size_t, value_type>;
211
212 public:
213 //===== access to components
214
216 row_reference operator[] ( size_type i )
217 {
218 return asImp().mat_access(i);
219 }
220
221 const_row_reference operator[] ( size_type i ) const
222 {
223 return asImp().mat_access(i);
224 }
225
227 size_type size() const
228 {
229 return rows();
230 }
231
232 //===== iterator interface to rows of the matrix
234 typedef DenseIterator<DenseMatrix,row_type,row_reference> Iterator;
236 typedef Iterator iterator;
238 typedef Iterator RowIterator;
240 typedef typename std::remove_reference<row_reference>::type::Iterator ColIterator;
241
243 Iterator begin ()
244 {
245 return Iterator(*this,0);
246 }
247
249 Iterator end ()
250 {
251 return Iterator(*this,rows());
252 }
253
256 Iterator beforeEnd ()
257 {
258 return Iterator(*this,rows()-1);
259 }
260
263 Iterator beforeBegin ()
264 {
265 return Iterator(*this,-1);
266 }
267
269 typedef DenseIterator<const DenseMatrix,const row_type,const_row_reference> ConstIterator;
271 typedef ConstIterator const_iterator;
273 typedef ConstIterator ConstRowIterator;
275 typedef typename std::remove_reference<const_row_reference>::type::ConstIterator ConstColIterator;
276
278 ConstIterator begin () const
279 {
280 return ConstIterator(*this,0);
281 }
282
284 ConstIterator end () const
285 {
286 return ConstIterator(*this,rows());
287 }
288
291 ConstIterator beforeEnd () const
292 {
293 return ConstIterator(*this,rows()-1);
294 }
295
298 ConstIterator beforeBegin () const
299 {
300 return ConstIterator(*this,-1);
301 }
302
303 //===== assignment
304
305 template< class RHS, class = std::enable_if_t< HasDenseMatrixAssigner< MAT, RHS >::value > >
306 derived_type &operator= ( const RHS &rhs )
307 {
308 DenseMatrixAssigner< MAT, RHS >::apply( asImp(), rhs );
309 return asImp();
310 }
311
312 //===== vector space arithmetic
313
315 template <class Other>
316 derived_type &operator+= (const DenseMatrix<Other>& x)
317 {
318 DUNE_ASSERT_BOUNDS(rows() == x.rows());
319 for (size_type i=0; i<rows(); i++)
320 (*this)[i] += x[i];
321 return asImp();
322 }
323
325 derived_type operator- () const
326 {
327 MAT result;
328 typedef typename decltype(result)::size_type size_type;
329
330 for (size_type i = 0; i < rows(); ++i)
331 for (size_type j = 0; j < cols(); ++j)
332 result[i][j] = - asImp()[i][j];
333
334 return result;
335 }
336
338 template <class Other>
339 derived_type &operator-= (const DenseMatrix<Other>& x)
340 {
341 DUNE_ASSERT_BOUNDS(rows() == x.rows());
342 for (size_type i=0; i<rows(); i++)
343 (*this)[i] -= x[i];
344 return asImp();
345 }
346
348 derived_type &operator*= (const field_type& k)
349 {
350 for (size_type i=0; i<rows(); i++)
351 (*this)[i] *= k;
352 return asImp();
353 }
354
356 derived_type &operator/= (const field_type& k)
357 {
358 for (size_type i=0; i<rows(); i++)
359 (*this)[i] /= k;
360 return asImp();
361 }
362
364 template <class Other>
365 derived_type &axpy (const field_type &a, const DenseMatrix<Other> &x )
366 {
367 DUNE_ASSERT_BOUNDS(rows() == x.rows());
368 for( size_type i = 0; i < rows(); ++i )
369 (*this)[ i ].axpy( a, x[ i ] );
370 return asImp();
371 }
372
374 template <class Other>
375 bool operator== (const DenseMatrix<Other>& x) const
376 {
377 DUNE_ASSERT_BOUNDS(rows() == x.rows());
378 for (size_type i=0; i<rows(); i++)
379 if ((*this)[i]!=x[i])
380 return false;
381 return true;
382 }
384 template <class Other>
385 bool operator!= (const DenseMatrix<Other>& x) const
386 {
387 return !operator==(x);
388 }
389
390
391 //===== linear maps
392
394 template<class X, class Y>
395 void mv (const X& x, Y& y) const
396 {
397 auto&& xx = Impl::asVector(x);
398 auto&& yy = Impl::asVector(y);
399 DUNE_ASSERT_BOUNDS((void*)(&x) != (void*)(&y));
400 DUNE_ASSERT_BOUNDS(xx.N() == M());
401 DUNE_ASSERT_BOUNDS(yy.N() == N());
402
403 using field_type = typename FieldTraits<Y>::field_type;
404 for (size_type i=0; i<rows(); ++i)
405 {
406 yy[i] = field_type(0);
407 for (size_type j=0; j<cols(); j++)
408 yy[i] += (*this)[i][j] * xx[j];
409 }
410 }
411
413 template< class X, class Y >
414 void mtv ( const X &x, Y &y ) const
415 {
416 auto&& xx = Impl::asVector(x);
417 auto&& yy = Impl::asVector(y);
418 DUNE_ASSERT_BOUNDS((void*)(&x) != (void*)(&y));
419 DUNE_ASSERT_BOUNDS(xx.N() == N());
420 DUNE_ASSERT_BOUNDS(yy.N() == M());
421
422 using field_type = typename FieldTraits<Y>::field_type;
423 for(size_type i = 0; i < cols(); ++i)
424 {
425 yy[i] = field_type(0);
426 for(size_type j = 0; j < rows(); ++j)
427 yy[i] += (*this)[j][i] * xx[j];
428 }
429 }
430
432 template<class X, class Y>
433 void umv (const X& x, Y& y) const
434 {
435 auto&& xx = Impl::asVector(x);
436 auto&& yy = Impl::asVector(y);
437 DUNE_ASSERT_BOUNDS(xx.N() == M());
438 DUNE_ASSERT_BOUNDS(yy.N() == N());
439 for (size_type i=0; i<rows(); ++i)
440 for (size_type j=0; j<cols(); j++)
441 yy[i] += (*this)[i][j] * xx[j];
442 }
443
445 template<class X, class Y>
446 void umtv (const X& x, Y& y) const
447 {
448 auto&& xx = Impl::asVector(x);
449 auto&& yy = Impl::asVector(y);
450 DUNE_ASSERT_BOUNDS(xx.N() == N());
451 DUNE_ASSERT_BOUNDS(yy.N() == M());
452 for(size_type i = 0; i<rows(); ++i)
453 for (size_type j=0; j<cols(); j++)
454 yy[j] += (*this)[i][j]*xx[i];
455 }
456
458 template<class X, class Y>
459 void umhv (const X& x, Y& y) const
460 {
461 auto&& xx = Impl::asVector(x);
462 auto&& yy = Impl::asVector(y);
463 DUNE_ASSERT_BOUNDS(xx.N() == N());
464 DUNE_ASSERT_BOUNDS(yy.N() == M());
465 for (size_type i=0; i<rows(); i++)
466 for (size_type j=0; j<cols(); j++)
467 yy[j] += conjugateComplex((*this)[i][j])*xx[i];
468 }
469
471 template<class X, class Y>
472 void mmv (const X& x, Y& y) const
473 {
474 auto&& xx = Impl::asVector(x);
475 auto&& yy = Impl::asVector(y);
476 DUNE_ASSERT_BOUNDS(xx.N() == M());
477 DUNE_ASSERT_BOUNDS(yy.N() == N());
478 for (size_type i=0; i<rows(); i++)
479 for (size_type j=0; j<cols(); j++)
480 yy[i] -= (*this)[i][j] * xx[j];
481 }
482
484 template<class X, class Y>
485 void mmtv (const X& x, Y& y) const
486 {
487 auto&& xx = Impl::asVector(x);
488 auto&& yy = Impl::asVector(y);
489 DUNE_ASSERT_BOUNDS(xx.N() == N());
490 DUNE_ASSERT_BOUNDS(yy.N() == M());
491 for (size_type i=0; i<rows(); i++)
492 for (size_type j=0; j<cols(); j++)
493 yy[j] -= (*this)[i][j]*xx[i];
494 }
495
497 template<class X, class Y>
498 void mmhv (const X& x, Y& y) const
499 {
500 auto&& xx = Impl::asVector(x);
501 auto&& yy = Impl::asVector(y);
502 DUNE_ASSERT_BOUNDS(xx.N() == N());
503 DUNE_ASSERT_BOUNDS(yy.N() == M());
504 for (size_type i=0; i<rows(); i++)
505 for (size_type j=0; j<cols(); j++)
506 yy[j] -= conjugateComplex((*this)[i][j])*xx[i];
507 }
508
510 template<class X, class Y>
511 void usmv (const typename FieldTraits<Y>::field_type & alpha,
512 const X& x, Y& y) const
513 {
514 auto&& xx = Impl::asVector(x);
515 auto&& yy = Impl::asVector(y);
516 DUNE_ASSERT_BOUNDS(xx.N() == M());
517 DUNE_ASSERT_BOUNDS(yy.N() == N());
518 for (size_type i=0; i<rows(); i++)
519 for (size_type j=0; j<cols(); j++)
520 yy[i] += alpha * (*this)[i][j] * xx[j];
521 }
522
524 template<class X, class Y>
525 void usmtv (const typename FieldTraits<Y>::field_type & alpha,
526 const X& x, Y& y) const
527 {
528 auto&& xx = Impl::asVector(x);
529 auto&& yy = Impl::asVector(y);
530 DUNE_ASSERT_BOUNDS(xx.N() == N());
531 DUNE_ASSERT_BOUNDS(yy.N() == M());
532 for (size_type i=0; i<rows(); i++)
533 for (size_type j=0; j<cols(); j++)
534 yy[j] += alpha*(*this)[i][j]*xx[i];
535 }
536
538 template<class X, class Y>
539 void usmhv (const typename FieldTraits<Y>::field_type & alpha,
540 const X& x, Y& y) const
541 {
542 auto&& xx = Impl::asVector(x);
543 auto&& yy = Impl::asVector(y);
544 DUNE_ASSERT_BOUNDS(xx.N() == N());
545 DUNE_ASSERT_BOUNDS(yy.N() == M());
546 for (size_type i=0; i<rows(); i++)
547 for (size_type j=0; j<cols(); j++)
548 yy[j] +=
549 alpha*conjugateComplex((*this)[i][j])*xx[i];
550 }
551
552 //===== norms
553
555 typename FieldTraits<value_type>::real_type frobenius_norm () const
556 {
557 typename FieldTraits<value_type>::real_type sum=(0.0);
558 for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
559 return fvmeta::sqrt(sum);
560 }
561
563 typename FieldTraits<value_type>::real_type frobenius_norm2 () const
564 {
565 typename FieldTraits<value_type>::real_type sum=(0.0);
566 for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
567 return sum;
568 }
569
571 template <typename vt = value_type,
572 typename std::enable_if<!HasNaN<vt>::value, int>::type = 0>
573 typename FieldTraits<vt>::real_type infinity_norm() const {
574 using real_type = typename FieldTraits<vt>::real_type;
575 using std::max;
576
577 real_type norm = 0;
578 for (auto const &x : *this) {
579 real_type const a = x.one_norm();
580 norm = max(a, norm);
581 }
582 return norm;
583 }
584
586 template <typename vt = value_type,
587 typename std::enable_if<!HasNaN<vt>::value, int>::type = 0>
588 typename FieldTraits<vt>::real_type infinity_norm_real() const {
589 using real_type = typename FieldTraits<vt>::real_type;
590 using std::max;
591
592 real_type norm = 0;
593 for (auto const &x : *this) {
594 real_type const a = x.one_norm_real();
595 norm = max(a, norm);
596 }
597 return norm;
598 }
599
601 template <typename vt = value_type,
602 typename std::enable_if<HasNaN<vt>::value, int>::type = 0>
603 typename FieldTraits<vt>::real_type infinity_norm() const {
604 using real_type = typename FieldTraits<vt>::real_type;
605 using std::max;
606
607 real_type norm = 0;
608 real_type isNaN = 1;
609 for (auto const &x : *this) {
610 real_type const a = x.one_norm();
611 norm = max(a, norm);
612 isNaN += a;
613 }
614 return norm * (isNaN / isNaN);
615 }
616
618 template <typename vt = value_type,
619 typename std::enable_if<HasNaN<vt>::value, int>::type = 0>
620 typename FieldTraits<vt>::real_type infinity_norm_real() const {
621 using real_type = typename FieldTraits<vt>::real_type;
622 using std::max;
623
624 real_type norm = 0;
625 real_type isNaN = 1;
626 for (auto const &x : *this) {
627 real_type const a = x.one_norm_real();
628 norm = max(a, norm);
629 isNaN += a;
630 }
631 return norm * (isNaN / isNaN);
632 }
633
634 //===== solve
635
640 template <class V1, class V2>
641 void solve (V1& x, const V2& b, bool doPivoting = true) const;
642
647 void invert(bool doPivoting = true);
648
650 field_type determinant (bool doPivoting = true) const;
651
653 template<typename M2>
654 MAT& leftmultiply (const DenseMatrix<M2>& M)
655 {
656 DUNE_ASSERT_BOUNDS(M.rows() == M.cols());
657 DUNE_ASSERT_BOUNDS(M.rows() == rows());
658 AutonomousValue<MAT> C(asImp());
659
660 for (size_type i=0; i<rows(); i++)
661 for (size_type j=0; j<cols(); j++) {
662 (*this)[i][j] = 0;
663 for (size_type k=0; k<rows(); k++)
664 (*this)[i][j] += M[i][k]*C[k][j];
665 }
666
667 return asImp();
668 }
669
671 template<typename M2>
672 MAT& rightmultiply (const DenseMatrix<M2>& M)
673 {
674 DUNE_ASSERT_BOUNDS(M.rows() == M.cols());
675 DUNE_ASSERT_BOUNDS(M.cols() == cols());
676 AutonomousValue<MAT> C(asImp());
677
678 for (size_type i=0; i<rows(); i++)
679 for (size_type j=0; j<cols(); j++) {
680 (*this)[i][j] = 0;
681 for (size_type k=0; k<cols(); k++)
682 (*this)[i][j] += C[i][k]*M[k][j];
683 }
684 return asImp();
685 }
686
687#if 0
689 template<int l>
690 DenseMatrix<K,l,cols> leftmultiplyany (const FieldMatrix<K,l,rows>& M) const
691 {
692 FieldMatrix<K,l,cols> C;
693
694 for (size_type i=0; i<l; i++) {
695 for (size_type j=0; j<cols(); j++) {
696 C[i][j] = 0;
697 for (size_type k=0; k<rows(); k++)
698 C[i][j] += M[i][k]*(*this)[k][j];
699 }
700 }
701 return C;
702 }
703
705 template<int l>
706 FieldMatrix<K,rows,l> rightmultiplyany (const FieldMatrix<K,cols,l>& M) const
707 {
708 FieldMatrix<K,rows,l> C;
709
710 for (size_type i=0; i<rows(); i++) {
711 for (size_type j=0; j<l; j++) {
712 C[i][j] = 0;
713 for (size_type k=0; k<cols(); k++)
714 C[i][j] += (*this)[i][k]*M[k][j];
715 }
716 }
717 return C;
718 }
719#endif
720
721 //===== sizes
722
724 size_type N () const
725 {
726 return rows();
727 }
728
730 size_type M () const
731 {
732 return cols();
733 }
734
736 size_type rows() const
737 {
738 return asImp().mat_rows();
739 }
740
742 size_type cols() const
743 {
744 return asImp().mat_cols();
745 }
746
747 //===== query
748
750 bool exists (size_type i, size_type j) const
751 {
752 DUNE_UNUSED_PARAMETER(i);
753 DUNE_UNUSED_PARAMETER(j);
754 DUNE_ASSERT_BOUNDS(i >= 0 && i < rows());
755 DUNE_ASSERT_BOUNDS(j >= 0 && j < cols());
756 return true;
757 }
758
759 protected:
760
761#ifndef DOXYGEN
762 struct ElimPivot
763 {
764 ElimPivot(std::vector<simd_index_type> & pivot);
765
766 void swap(std::size_t i, simd_index_type j);
767
768 template<typename T>
769 void operator()(const T&, int, int)
770 {}
771
772 std::vector<simd_index_type> & pivot_;
773 };
774
775 template<typename V>
776 struct Elim
777 {
778 Elim(V& rhs);
779
780 void swap(std::size_t i, simd_index_type j);
781
782 void operator()(const typename V::field_type& factor, int k, int i);
783
784 V* rhs_;
785 };
786
787 struct ElimDet
788 {
789 ElimDet(field_type& sign) : sign_(sign)
790 { sign_ = 1; }
791
792 void swap(std::size_t i, simd_index_type j)
793 {
794 sign_ *=
795 Simd::cond(simd_index_type(i) == j, field_type(1), field_type(-1));
796 }
797
798 void operator()(const field_type&, int, int)
799 {}
800
801 field_type& sign_;
802 };
803#endif // DOXYGEN
804
806
844 template<class Func, class Mask>
845 static void luDecomposition(DenseMatrix<MAT>& A, Func func,
846 Mask &nonsingularLanes, bool throwEarly, bool doPivoting);
847 };
848
849#ifndef DOXYGEN
850 template<typename MAT>
851 DenseMatrix<MAT>::ElimPivot::ElimPivot(std::vector<simd_index_type> & pivot)
852 : pivot_(pivot)
853 {
854 typedef typename std::vector<size_type>::size_type size_type;
855 for(size_type i=0; i < pivot_.size(); ++i) pivot_[i]=i;
856 }
857
858 template<typename MAT>
859 void DenseMatrix<MAT>::ElimPivot::swap(std::size_t i, simd_index_type j)
860 {
861 pivot_[i] =
862 Simd::cond(Simd::Scalar<simd_index_type>(i) == j, pivot_[i], j);
863 }
864
865 template<typename MAT>
866 template<typename V>
867 DenseMatrix<MAT>::Elim<V>::Elim(V& rhs)
868 : rhs_(&rhs)
869 {}
870
871 template<typename MAT>
872 template<typename V>
873 void DenseMatrix<MAT>::Elim<V>::swap(std::size_t i, simd_index_type j)
874 {
875 using std::swap;
876
877 // see the comment in luDecomposition()
878 for(std::size_t l = 0; l < Simd::lanes(j); ++l)
879 swap(Simd::lane(l, (*rhs_)[ i ]),
880 Simd::lane(l, (*rhs_)[Simd::lane(l, j)]));
881 }
882
883 template<typename MAT>
884 template<typename V>
885 void DenseMatrix<MAT>::
886 Elim<V>::operator()(const typename V::field_type& factor, int k, int i)
887 {
888 (*rhs_)[k] -= factor*(*rhs_)[i];
889 }
890
891 template<typename MAT>
892 template<typename Func, class Mask>
893 inline void DenseMatrix<MAT>::
894 luDecomposition(DenseMatrix<MAT>& A, Func func, Mask &nonsingularLanes,
895 bool throwEarly, bool doPivoting)
896 {
897 using std::max;
898 using std::swap;
899
900 typedef typename FieldTraits<value_type>::real_type real_type;
901
902 // LU decomposition of A in A
903 for (size_type i=0; i<A.rows(); i++) // loop over all rows
904 {
905 real_type pivmax = fvmeta::absreal(A[i][i]);
906
907 if (doPivoting)
908 {
909 // compute maximum of column
910 simd_index_type imax=i;
911 for (size_type k=i+1; k<A.rows(); k++)
912 {
913 auto abs = fvmeta::absreal(A[k][i]);
914 auto mask = abs > pivmax;
915 pivmax = Simd::cond(mask, abs, pivmax);
916 imax = Simd::cond(mask, simd_index_type(k), imax);
917 }
918 // swap rows
919 for (size_type j=0; j<A.rows(); j++)
920 {
921 // This is a swap operation where the second operand is scattered,
922 // and on top of that is also extracted from deep within a
923 // moderately complicated data structure (a DenseMatrix), where we
924 // can't assume much on the memory layout. On intel processors,
925 // the only instruction that might help us here is vgather, but it
926 // is unclear whether that is even faster than a software
927 // implementation, and we would also need vscatter which does not
928 // exist. So break vectorization here and do it manually.
929 for(std::size_t l = 0; l < Simd::lanes(A[i][j]); ++l)
930 swap(Simd::lane(l, A[i][j]),
931 Simd::lane(l, A[Simd::lane(l, imax)][j]));
932 }
933 func.swap(i, imax); // swap the pivot or rhs
934 }
935
936 // singular ?
937 nonsingularLanes = nonsingularLanes && (pivmax != real_type(0));
938 if (throwEarly) {
939 if(!Simd::allTrue(nonsingularLanes))
940 DUNE_THROW(FMatrixError, "matrix is singular");
941 }
942 else { // !throwEarly
943 if(!Simd::anyTrue(nonsingularLanes))
944 return;
945 }
946
947 // eliminate
948 for (size_type k=i+1; k<A.rows(); k++)
949 {
950 // in the simd case, A[i][i] may be close to zero in some lanes. Pray
951 // that the result is no worse than a quiet NaN.
952 field_type factor = A[k][i]/A[i][i];
953 A[k][i] = factor;
954 for (size_type j=i+1; j<A.rows(); j++)
955 A[k][j] -= factor*A[i][j];
956 func(factor, k, i);
957 }
958 }
959 }
960
961 template<typename MAT>
962 template <class V1, class V2>
963 inline void DenseMatrix<MAT>::solve(V1& x, const V2& b, bool doPivoting) const
964 {
965 using real_type = typename FieldTraits<value_type>::real_type;
966 // never mind those ifs, because they get optimized away
967 if (rows()!=cols())
968 DUNE_THROW(FMatrixError, "Can't solve for a " << rows() << "x" << cols() << " matrix!");
969
970 if (rows()==1) {
971
972#ifdef DUNE_FMatrix_WITH_CHECKING
973 if (Simd::anyTrue(fvmeta::absreal((*this)[0][0])
974 < FMatrixPrecision<>::absolute_limit()))
975 DUNE_THROW(FMatrixError,"matrix is singular");
976#endif
977 x[0] = b[0]/(*this)[0][0];
978
979 }
980 else if (rows()==2) {
981
982 field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
983#ifdef DUNE_FMatrix_WITH_CHECKING
984 if (Simd::anyTrue(fvmeta::absreal(detinv)
985 < FMatrixPrecision<>::absolute_limit()))
986 DUNE_THROW(FMatrixError,"matrix is singular");
987#endif
988 detinv = real_type(1.0)/detinv;
989
990 x[0] = detinv*((*this)[1][1]*b[0]-(*this)[0][1]*b[1]);
991 x[1] = detinv*((*this)[0][0]*b[1]-(*this)[1][0]*b[0]);
992
993 }
994 else if (rows()==3) {
995
996 field_type d = determinant(doPivoting);
997#ifdef DUNE_FMatrix_WITH_CHECKING
998 if (Simd::anyTrue(fvmeta::absreal(d)
999 < FMatrixPrecision<>::absolute_limit()))
1000 DUNE_THROW(FMatrixError,"matrix is singular");
1001#endif
1002
1003 x[0] = (b[0]*(*this)[1][1]*(*this)[2][2] - b[0]*(*this)[2][1]*(*this)[1][2]
1004 - b[1] *(*this)[0][1]*(*this)[2][2] + b[1]*(*this)[2][1]*(*this)[0][2]
1005 + b[2] *(*this)[0][1]*(*this)[1][2] - b[2]*(*this)[1][1]*(*this)[0][2]) / d;
1006
1007 x[1] = ((*this)[0][0]*b[1]*(*this)[2][2] - (*this)[0][0]*b[2]*(*this)[1][2]
1008 - (*this)[1][0] *b[0]*(*this)[2][2] + (*this)[1][0]*b[2]*(*this)[0][2]
1009 + (*this)[2][0] *b[0]*(*this)[1][2] - (*this)[2][0]*b[1]*(*this)[0][2]) / d;
1010
1011 x[2] = ((*this)[0][0]*(*this)[1][1]*b[2] - (*this)[0][0]*(*this)[2][1]*b[1]
1012 - (*this)[1][0] *(*this)[0][1]*b[2] + (*this)[1][0]*(*this)[2][1]*b[0]
1013 + (*this)[2][0] *(*this)[0][1]*b[1] - (*this)[2][0]*(*this)[1][1]*b[0]) / d;
1014
1015 }
1016 else {
1017
1018 V1& rhs = x; // use x to store rhs
1019 rhs = b; // copy data
1020 Elim<V1> elim(rhs);
1021 AutonomousValue<MAT> A(asImp());
1022 Simd::Mask<typename FieldTraits<value_type>::real_type>
1023 nonsingularLanes(true);
1024
1025 AutonomousValue<MAT>::luDecomposition(A, elim, nonsingularLanes, true, doPivoting);
1026
1027 // backsolve
1028 for(int i=rows()-1; i>=0; i--) {
1029 for (size_type j=i+1; j<rows(); j++)
1030 rhs[i] -= A[i][j]*x[j];
1031 x[i] = rhs[i]/A[i][i];
1032 }
1033 }
1034 }
1035
1036 template<typename MAT>
1037 inline void DenseMatrix<MAT>::invert(bool doPivoting)
1038 {
1039 using real_type = typename FieldTraits<MAT>::real_type;
1040 using std::swap;
1041
1042 // never mind those ifs, because they get optimized away
1043 if (rows()!=cols())
1044 DUNE_THROW(FMatrixError, "Can't invert a " << rows() << "x" << cols() << " matrix!");
1045
1046 if (rows()==1) {
1047
1048#ifdef DUNE_FMatrix_WITH_CHECKING
1049 if (Simd::anyTrue(fvmeta::absreal((*this)[0][0])
1050 < FMatrixPrecision<>::absolute_limit()))
1051 DUNE_THROW(FMatrixError,"matrix is singular");
1052#endif
1053 (*this)[0][0] = real_type( 1 ) / (*this)[0][0];
1054
1055 }
1056 else if (rows()==2) {
1057
1058 field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
1059#ifdef DUNE_FMatrix_WITH_CHECKING
1060 if (Simd::anyTrue(fvmeta::absreal(detinv)
1061 < FMatrixPrecision<>::absolute_limit()))
1062 DUNE_THROW(FMatrixError,"matrix is singular");
1063#endif
1064 detinv = real_type( 1 ) / detinv;
1065
1066 field_type temp=(*this)[0][0];
1067 (*this)[0][0] = (*this)[1][1]*detinv;
1068 (*this)[0][1] = -(*this)[0][1]*detinv;
1069 (*this)[1][0] = -(*this)[1][0]*detinv;
1070 (*this)[1][1] = temp*detinv;
1071
1072 }
1073 else if (rows()==3)
1074 {
1075 using K = field_type;
1076 // code generated by maple
1077 K t4 = (*this)[0][0] * (*this)[1][1];
1078 K t6 = (*this)[0][0] * (*this)[1][2];
1079 K t8 = (*this)[0][1] * (*this)[1][0];
1080 K t10 = (*this)[0][2] * (*this)[1][0];
1081 K t12 = (*this)[0][1] * (*this)[2][0];
1082 K t14 = (*this)[0][2] * (*this)[2][0];
1083
1084 K det = (t4*(*this)[2][2]-t6*(*this)[2][1]-t8*(*this)[2][2]+
1085 t10*(*this)[2][1]+t12*(*this)[1][2]-t14*(*this)[1][1]);
1086 K t17 = K(1.0)/det;
1087
1088 K matrix01 = (*this)[0][1];
1089 K matrix00 = (*this)[0][0];
1090 K matrix10 = (*this)[1][0];
1091 K matrix11 = (*this)[1][1];
1092
1093 (*this)[0][0] = ((*this)[1][1] * (*this)[2][2] - (*this)[1][2] * (*this)[2][1])*t17;
1094 (*this)[0][1] = -((*this)[0][1] * (*this)[2][2] - (*this)[0][2] * (*this)[2][1])*t17;
1095 (*this)[0][2] = (matrix01 * (*this)[1][2] - (*this)[0][2] * (*this)[1][1])*t17;
1096 (*this)[1][0] = -((*this)[1][0] * (*this)[2][2] - (*this)[1][2] * (*this)[2][0])*t17;
1097 (*this)[1][1] = (matrix00 * (*this)[2][2] - t14) * t17;
1098 (*this)[1][2] = -(t6-t10) * t17;
1099 (*this)[2][0] = (matrix10 * (*this)[2][1] - matrix11 * (*this)[2][0]) * t17;
1100 (*this)[2][1] = -(matrix00 * (*this)[2][1] - t12) * t17;
1101 (*this)[2][2] = (t4-t8) * t17;
1102 }
1103 else {
1104 using std::swap;
1105
1106 AutonomousValue<MAT> A(asImp());
1107 std::vector<simd_index_type> pivot(rows());
1108 Simd::Mask<typename FieldTraits<value_type>::real_type>
1109 nonsingularLanes(true);
1110 AutonomousValue<MAT>::luDecomposition(A, ElimPivot(pivot), nonsingularLanes, true, doPivoting);
1111 auto& L=A;
1112 auto& U=A;
1113
1114 // initialize inverse
1115 *this=field_type();
1116
1117 for(size_type i=0; i<rows(); ++i)
1118 (*this)[i][i]=1;
1119
1120 // L Y = I; multiple right hand sides
1121 for (size_type i=0; i<rows(); i++)
1122 for (size_type j=0; j<i; j++)
1123 for (size_type k=0; k<rows(); k++)
1124 (*this)[i][k] -= L[i][j]*(*this)[j][k];
1125
1126 // U A^{-1} = Y
1127 for (size_type i=rows(); i>0;) {
1128 --i;
1129 for (size_type k=0; k<rows(); k++) {
1130 for (size_type j=i+1; j<rows(); j++)
1131 (*this)[i][k] -= U[i][j]*(*this)[j][k];
1132 (*this)[i][k] /= U[i][i];
1133 }
1134 }
1135
1136 for(size_type i=rows(); i>0; ) {
1137 --i;
1138 for(std::size_t l = 0; l < Simd::lanes((*this)[0][0]); ++l)
1139 {
1140 std::size_t pi = Simd::lane(l, pivot[i]);
1141 if(i!=pi)
1142 for(size_type j=0; j<rows(); ++j)
1143 swap(Simd::lane(l, (*this)[j][pi]),
1144 Simd::lane(l, (*this)[j][ i]));
1145 }
1146 }
1147 }
1148 }
1149
1150 // implementation of the determinant
1151 template<typename MAT>
1152 inline typename DenseMatrix<MAT>::field_type
1153 DenseMatrix<MAT>::determinant(bool doPivoting) const
1154 {
1155 // never mind those ifs, because they get optimized away
1156 if (rows()!=cols())
1157 DUNE_THROW(FMatrixError, "There is no determinant for a " << rows() << "x" << cols() << " matrix!");
1158
1159 if (rows()==1)
1160 return (*this)[0][0];
1161
1162 if (rows()==2)
1163 return (*this)[0][0]*(*this)[1][1] - (*this)[0][1]*(*this)[1][0];
1164
1165 if (rows()==3) {
1166 // code generated by maple
1167 field_type t4 = (*this)[0][0] * (*this)[1][1];
1168 field_type t6 = (*this)[0][0] * (*this)[1][2];
1169 field_type t8 = (*this)[0][1] * (*this)[1][0];
1170 field_type t10 = (*this)[0][2] * (*this)[1][0];
1171 field_type t12 = (*this)[0][1] * (*this)[2][0];
1172 field_type t14 = (*this)[0][2] * (*this)[2][0];
1173
1174 return (t4*(*this)[2][2]-t6*(*this)[2][1]-t8*(*this)[2][2]+
1175 t10*(*this)[2][1]+t12*(*this)[1][2]-t14*(*this)[1][1]);
1176
1177 }
1178
1179 AutonomousValue<MAT> A(asImp());
1180 field_type det;
1181 Simd::Mask<typename FieldTraits<value_type>::real_type>
1182 nonsingularLanes(true);
1183
1184 AutonomousValue<MAT>::luDecomposition(A, ElimDet(det), nonsingularLanes, false, doPivoting);
1185 det = Simd::cond(nonsingularLanes, det, field_type(0));
1186
1187 for (size_type i = 0; i < rows(); ++i)
1188 det *= A[i][i];
1189 return det;
1190 }
1191
1192#endif // DOXYGEN
1193
1194 namespace DenseMatrixHelp {
1195
1197 template <typename MAT, typename V1, typename V2>
1198 static inline void multAssign(const DenseMatrix<MAT> &matrix, const DenseVector<V1> & x, DenseVector<V2> & ret)
1199 {
1200 DUNE_ASSERT_BOUNDS(x.size() == matrix.cols());
1201 DUNE_ASSERT_BOUNDS(ret.size() == matrix.rows());
1202 typedef typename DenseMatrix<MAT>::size_type size_type;
1203
1204 for(size_type i=0; i<matrix.rows(); ++i)
1205 {
1206 ret[i] = 0.0;
1207 for(size_type j=0; j<matrix.cols(); ++j)
1208 {
1209 ret[i] += matrix[i][j]*x[j];
1210 }
1211 }
1212 }
1213
1214#if 0
1216 template <typename K, int rows, int cols>
1217 static inline void multAssignTransposed( const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,rows> & x, FieldVector<K,cols> & ret)
1218 {
1219 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
1220
1221 for(size_type i=0; i<cols(); ++i)
1222 {
1223 ret[i] = 0.0;
1224 for(size_type j=0; j<rows(); ++j)
1225 ret[i] += matrix[j][i]*x[j];
1226 }
1227 }
1228
1230 template <typename K, int rows, int cols>
1231 static inline FieldVector<K,rows> mult(const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,cols> & x)
1232 {
1233 FieldVector<K,rows> ret;
1234 multAssign(matrix,x,ret);
1235 return ret;
1236 }
1237
1239 template <typename K, int rows, int cols>
1240 static inline FieldVector<K,cols> multTransposed(const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,rows> & x)
1241 {
1242 FieldVector<K,cols> ret;
1243 multAssignTransposed( matrix, x, ret );
1244 return ret;
1245 }
1246#endif
1247
1248 } // end namespace DenseMatrixHelp
1249
1251 template<typename MAT>
1252 std::ostream& operator<< (std::ostream& s, const DenseMatrix<MAT>& a)
1253 {
1254 for (typename DenseMatrix<MAT>::size_type i=0; i<a.rows(); i++)
1255 s << a[i] << std::endl;
1256 return s;
1257 }
1258
1261} // end namespace Dune
1262
1263#endif
Macro for wrapping boundary checks.
A free function to provide the demangled class name of a given object or type as a string.
Definition of the DUNE_DEPRECATED macro for the case that config.h is not available.
A few common exception classes.
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_DEPRECATED_MSG(text)
Mark some entity as deprecated.
Definition: deprecated.hh:169
Some useful basic math stuff.
Dune namespace.
Definition: alignedallocator.hh:14
Various precision settings for calculations with FieldMatrix and FieldVector.
Implements a scalar vector view wrapper around an existing scalar.
Include file for users of the SIMD abstraction layer.
Traits for type conversions and type information.
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)