Dune Core Modules (2.6.0)

umfpack.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_ISTL_UMFPACK_HH
4 #define DUNE_ISTL_UMFPACK_HH
5 
6 #if HAVE_SUITESPARSE_UMFPACK || defined DOXYGEN
7 
8 #include<complex>
9 #include<type_traits>
10 
11 #include<umfpack.h>
12 
14 #include<dune/common/fmatrix.hh>
15 #include<dune/common/fvector.hh>
16 #include<dune/common/unused.hh>
18 #include<dune/istl/solvers.hh>
20 
21 #include"colcompmatrix.hh"
22 
23 
24 namespace Dune {
36  // FORWARD DECLARATIONS
37  template<class M, class T, class TM, class TD, class TA>
38  class SeqOverlappingSchwarz;
39 
40  template<class T, bool tag>
41  struct SeqOverlappingSchwarzAssemblerHelper;
42 
48  template<class Matrix>
49  class UMFPack
50  {};
51 
52  // wrapper class for C-Function Calls in the backend. Choose the right function namespace
53  // depending on the template parameter used.
54  template<typename T>
55  struct UMFPackMethodChooser
56  {
57  static constexpr bool valid = false ;
58  };
59 
60  template<>
61  struct UMFPackMethodChooser<double>
62  {
63  static constexpr bool valid = true ;
64 
65  template<typename... A>
66  static void defaults(A... args)
67  {
68  umfpack_di_defaults(args...);
69  }
70  template<typename... A>
71  static void free_numeric(A... args)
72  {
73  umfpack_di_free_numeric(args...);
74  }
75  template<typename... A>
76  static void free_symbolic(A... args)
77  {
78  umfpack_di_free_symbolic(args...);
79  }
80  template<typename... A>
81  static int load_numeric(A... args)
82  {
83  return umfpack_di_load_numeric(args...);
84  }
85  template<typename... A>
86  static void numeric(A... args)
87  {
88  umfpack_di_numeric(args...);
89  }
90  template<typename... A>
91  static void report_info(A... args)
92  {
93  umfpack_di_report_info(args...);
94  }
95  template<typename... A>
96  static void report_status(A... args)
97  {
98  umfpack_di_report_status(args...);
99  }
100  template<typename... A>
101  static int save_numeric(A... args)
102  {
103  return umfpack_di_save_numeric(args...);
104  }
105  template<typename... A>
106  static void solve(A... args)
107  {
108  umfpack_di_solve(args...);
109  }
110  template<typename... A>
111  static void symbolic(A... args)
112  {
113  umfpack_di_symbolic(args...);
114  }
115  };
116 
117  template<>
118  struct UMFPackMethodChooser<std::complex<double> >
119  {
120  static constexpr bool valid = true ;
121 
122  template<typename... A>
123  static void defaults(A... args)
124  {
125  umfpack_zi_defaults(args...);
126  }
127  template<typename... A>
128  static void free_numeric(A... args)
129  {
130  umfpack_zi_free_numeric(args...);
131  }
132  template<typename... A>
133  static void free_symbolic(A... args)
134  {
135  umfpack_zi_free_symbolic(args...);
136  }
137  template<typename... A>
138  static int load_numeric(A... args)
139  {
140  return umfpack_zi_load_numeric(args...);
141  }
142  template<typename... A>
143  static void numeric(const int* cs, const int* ri, const double* val, A... args)
144  {
145  umfpack_zi_numeric(cs,ri,val,NULL,args...);
146  }
147  template<typename... A>
148  static void report_info(A... args)
149  {
150  umfpack_zi_report_info(args...);
151  }
152  template<typename... A>
153  static void report_status(A... args)
154  {
155  umfpack_zi_report_status(args...);
156  }
157  template<typename... A>
158  static int save_numeric(A... args)
159  {
160  return umfpack_zi_save_numeric(args...);
161  }
162  template<typename... A>
163  static void solve(int m, const int* cs, const int* ri, std::complex<double>* val, double* x, const double* b,A... args)
164  {
165  const double* cval = reinterpret_cast<const double*>(val);
166  umfpack_zi_solve(m,cs,ri,cval,NULL,x,NULL,b,NULL,args...);
167  }
168  template<typename... A>
169  static void symbolic(int m, int n, const int* cs, const int* ri, const double* val, A... args)
170  {
171  umfpack_zi_symbolic(m,n,cs,ri,val,NULL,args...);
172  }
173  };
174 
188  template<typename T, typename A, int n, int m>
189  class UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A > >
190  : public InverseOperator<
191  BlockVector<FieldVector<T,m>,
192  typename A::template rebind<FieldVector<T,m> >::other>,
193  BlockVector<FieldVector<T,n>,
194  typename A::template rebind<FieldVector<T,n> >::other> >
195  {
196  public:
205  typedef Dune::BlockVector<
207  typename A::template rebind<FieldVector<T,m> >::other> domain_type;
209  typedef Dune::BlockVector<
211  typename A::template rebind<FieldVector<T,n> >::other> range_type;
212 
215  {
216  return SolverCategory::Category::sequential;
217  }
218 
227  UMFPack(const Matrix& matrix, int verbose=0) : matrixIsLoaded_(false)
228  {
229  //check whether T is a supported type
230  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
231  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
232  Caller::defaults(UMF_Control);
233  setVerbosity(verbose);
234  setMatrix(matrix);
235  }
236 
245  UMFPack(const Matrix& matrix, int verbose, bool) : matrixIsLoaded_(false)
246  {
247  //check whether T is a supported type
248  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
249  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
250  Caller::defaults(UMF_Control);
251  setVerbosity(verbose);
252  setMatrix(matrix);
253  }
254 
257  UMFPack() : matrixIsLoaded_(false), verbosity_(0)
258  {
259  //check whether T is a supported type
260  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
261  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
262  Caller::defaults(UMF_Control);
263  }
264 
275  UMFPack(const Matrix& mat_, const char* file, int verbose=0)
276  {
277  //check whether T is a supported type
278  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
279  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
280  Caller::defaults(UMF_Control);
281  setVerbosity(verbose);
282  int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
283  if ((errcode == UMFPACK_ERROR_out_of_memory) || (errcode == UMFPACK_ERROR_file_IO))
284  {
285  matrixIsLoaded_ = false;
286  setMatrix(mat_);
287  saveDecomposition(file);
288  }
289  else
290  {
291  matrixIsLoaded_ = true;
292  std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
293  }
294  }
295 
302  UMFPack(const char* file, int verbose=0)
303  {
304  //check whether T is a supported type
305  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
306  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
307  Caller::defaults(UMF_Control);
308  int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
309  if (errcode == UMFPACK_ERROR_out_of_memory)
310  DUNE_THROW(Dune::Exception, "ran out of memory while loading UMFPack decomposition");
311  if (errcode == UMFPACK_ERROR_file_IO)
312  DUNE_THROW(Dune::Exception, "IO error while loading UMFPack decomposition");
313  matrixIsLoaded_ = true;
314  std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
315  setVerbosity(verbose);
316  }
317 
318  virtual ~UMFPack()
319  {
320  if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
321  free();
322  }
323 
328  {
329  if (umfpackMatrix_.N() != b.dim())
330  DUNE_THROW(Dune::ISTLError, "Size of right-hand-side vector b does not match the number of matrix rows!");
331  if (umfpackMatrix_.M() != x.dim())
332  DUNE_THROW(Dune::ISTLError, "Size of solution vector x does not match the number of matrix columns!");
333 
334  double UMF_Apply_Info[UMFPACK_INFO];
335  Caller::solve(UMFPACK_A,
336  umfpackMatrix_.getColStart(),
337  umfpackMatrix_.getRowIndex(),
338  umfpackMatrix_.getValues(),
339  reinterpret_cast<double*>(&x[0]),
340  reinterpret_cast<double*>(&b[0]),
341  UMF_Numeric,
342  UMF_Control,
343  UMF_Apply_Info);
344 
345  //this is a direct solver
346  res.iterations = 1;
347  res.converged = true;
348  res.elapsed = UMF_Apply_Info[UMFPACK_SOLVE_WALLTIME];
349 
350  printOnApply(UMF_Apply_Info);
351  }
352 
356  virtual void apply (domain_type& x, range_type& b, double reduction, InverseOperatorResult& res)
357  {
358  DUNE_UNUSED_PARAMETER(reduction);
359  apply(x,b,res);
360  }
361 
367  void apply(T* x, T* b)
368  {
369  double UMF_Apply_Info[UMFPACK_INFO];
370  Caller::solve(UMFPACK_A,
371  umfpackMatrix_.getColStart(),
372  umfpackMatrix_.getRowIndex(),
373  umfpackMatrix_.getValues(),
374  x,
375  b,
376  UMF_Numeric,
377  UMF_Control,
378  UMF_Apply_Info);
379  printOnApply(UMF_Apply_Info);
380  }
381 
393  void setOption(unsigned int option, double value)
394  {
395  if (option >= UMFPACK_CONTROL)
396  DUNE_THROW(RangeError, "Requested non-existing UMFPack option");
397 
398  UMF_Control[option] = value;
399  }
400 
404  void saveDecomposition(const char* file)
405  {
406  int errcode = Caller::save_numeric(UMF_Numeric, const_cast<char*>(file));
407  if (errcode != UMFPACK_OK)
408  DUNE_THROW(Dune::Exception,"IO ERROR while trying to save UMFPack decomposition");
409  }
410 
412  void setMatrix(const Matrix& matrix)
413  {
414  if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
415  free();
416  umfpackMatrix_ = matrix;
417  decompose();
418  }
419 
420  template<class S>
421  void setSubMatrix(const Matrix& _mat, const S& rowIndexSet)
422  {
423  if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
424  free();
425  umfpackMatrix_.setMatrix(_mat,rowIndexSet);
426  decompose();
427  }
428 
436  void setVerbosity(int v)
437  {
438  verbosity_ = v;
439  // set the verbosity level in UMFPack
440  if (verbosity_ == 0)
441  UMF_Control[UMFPACK_PRL] = 1;
442  if (verbosity_ == 1)
443  UMF_Control[UMFPACK_PRL] = 2;
444  if (verbosity_ == 2)
445  UMF_Control[UMFPACK_PRL] = 4;
446  }
447 
453  {
454  return UMF_Numeric;
455  }
456 
462  {
463  return umfpackMatrix_;
464  }
465 
470  void free()
471  {
472  if (!matrixIsLoaded_)
473  {
474  Caller::free_symbolic(&UMF_Symbolic);
475  umfpackMatrix_.free();
476  }
477  Caller::free_numeric(&UMF_Numeric);
478  matrixIsLoaded_ = false;
479  }
480 
481  const char* name() { return "UMFPACK"; }
482 
483  private:
484  typedef typename Dune::UMFPackMethodChooser<T> Caller;
485 
486  template<class M,class X, class TM, class TD, class T1>
487  friend class SeqOverlappingSchwarz;
488  friend struct SeqOverlappingSchwarzAssemblerHelper<UMFPack<Matrix>,true>;
489 
491  void decompose()
492  {
493  double UMF_Decomposition_Info[UMFPACK_INFO];
494  Caller::symbolic(static_cast<int>(umfpackMatrix_.N()),
495  static_cast<int>(umfpackMatrix_.N()),
496  umfpackMatrix_.getColStart(),
497  umfpackMatrix_.getRowIndex(),
498  reinterpret_cast<double*>(umfpackMatrix_.getValues()),
499  &UMF_Symbolic,
500  UMF_Control,
501  UMF_Decomposition_Info);
502  Caller::numeric(umfpackMatrix_.getColStart(),
503  umfpackMatrix_.getRowIndex(),
504  reinterpret_cast<double*>(umfpackMatrix_.getValues()),
505  UMF_Symbolic,
506  &UMF_Numeric,
507  UMF_Control,
508  UMF_Decomposition_Info);
509  Caller::report_status(UMF_Control,UMF_Decomposition_Info[UMFPACK_STATUS]);
510  if (verbosity_ == 1)
511  {
512  std::cout << "[UMFPack Decomposition]" << std::endl;
513  std::cout << "Wallclock Time taken: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_WALLTIME] << " (CPU Time: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_TIME] << ")" << std::endl;
514  std::cout << "Flops taken: " << UMF_Decomposition_Info[UMFPACK_FLOPS] << std::endl;
515  std::cout << "Peak Memory Usage: " << UMF_Decomposition_Info[UMFPACK_PEAK_MEMORY]*UMF_Decomposition_Info[UMFPACK_SIZE_OF_UNIT] << " bytes" << std::endl;
516  std::cout << "Condition number estimate: " << 1./UMF_Decomposition_Info[UMFPACK_RCOND] << std::endl;
517  std::cout << "Numbers of non-zeroes in decomposition: L: " << UMF_Decomposition_Info[UMFPACK_LNZ] << " U: " << UMF_Decomposition_Info[UMFPACK_UNZ] << std::endl;
518  }
519  if (verbosity_ == 2)
520  {
521  Caller::report_info(UMF_Control,UMF_Decomposition_Info);
522  }
523  }
524 
525  void printOnApply(double* UMF_Info)
526  {
527  Caller::report_status(UMF_Control,UMF_Info[UMFPACK_STATUS]);
528  if (verbosity_ > 0)
529  {
530  std::cout << "[UMFPack Solve]" << std::endl;
531  std::cout << "Wallclock Time: " << UMF_Info[UMFPACK_SOLVE_WALLTIME] << " (CPU Time: " << UMF_Info[UMFPACK_SOLVE_TIME] << ")" << std::endl;
532  std::cout << "Flops Taken: " << UMF_Info[UMFPACK_SOLVE_FLOPS] << std::endl;
533  std::cout << "Iterative Refinement steps taken: " << UMF_Info[UMFPACK_IR_TAKEN] << std::endl;
534  std::cout << "Error Estimate: " << UMF_Info[UMFPACK_OMEGA1] << " resp. " << UMF_Info[UMFPACK_OMEGA2] << std::endl;
535  }
536  }
537 
538  UMFPackMatrix umfpackMatrix_;
539  bool matrixIsLoaded_;
540  int verbosity_;
541  void *UMF_Symbolic;
542  void *UMF_Numeric;
543  double UMF_Control[UMFPACK_CONTROL];
544  };
545 
546  template<typename T, typename A, int n, int m>
547  struct IsDirectSolver<UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
548  {
549  enum { value=true};
550  };
551 
552  template<typename T, typename A, int n, int m>
553  struct StoresColumnCompressed<UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
554  {
555  enum { value = true };
556  };
557 }
558 
559 #endif // HAVE_SUITESPARSE_UMFPACK
560 
561 #endif //DUNE_ISTL_UMFPACK_HH
Implementation of the BCRSMatrix class.
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:423
A vector of blocks with memory management.
Definition: bvector.hh:317
Base class for Dune-Exceptions.
Definition: exceptions.hh:94
A dense n x m matrix.
Definition: fmatrix.hh:68
vector space out of a tensor product of fields.
Definition: fvector.hh:93
derive error class from the base class in common
Definition: istlexception.hh:16
Abstract base class for all solvers.
Definition: solver.hh:91
A generic dynamic dense matrix.
Definition: matrix.hh:555
Default exception class for range errors.
Definition: exceptions.hh:252
Use the UMFPack package to directly solve linear systems – empty default class.
Definition: umfpack.hh:50
A few common exception classes.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
decltype(auto) apply(F &&f, ArgTuple &&args)
Apply function with arguments given as tuple.
Definition: apply.hh:58
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentionally unused function parameters with.
Definition: unused.hh:25
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
UMFPack(const Matrix &matrix, int verbose, bool)
Constructor for compatibility with SuperLU standard constructor.
Definition: umfpack.hh:245
void * getFactorization()
Return the matrix factorization.
Definition: umfpack.hh:452
void setVerbosity(int v)
sets the verbosity level for the UMFPack solver
Definition: umfpack.hh:436
UMFPack(const Matrix &mat_, const char *file, int verbose=0)
Try loading a decomposition from file and do a decomposition if unsuccessful.
Definition: umfpack.hh:275
Dune::BlockVector< FieldVector< T, m >, typename A::template rebind< FieldVector< T, m > >::other > domain_type
The type of the domain of the solver.
Definition: umfpack.hh:207
UMFPackMatrix & getInternalMatrix()
Return the column compress matrix from UMFPack.
Definition: umfpack.hh:461
void setMatrix(const Matrix &matrix)
Initialize data from given matrix.
Definition: umfpack.hh:412
virtual void apply(domain_type &x, range_type &b, InverseOperatorResult &res)
Apply inverse operator,.
Definition: umfpack.hh:327
void free()
free allocated space.
Definition: umfpack.hh:470
ColCompMatrixInitializer< BCRSMatrix< FieldMatrix< T, n, m >, A > > MatrixInitializer
Type of an associated initializer class.
Definition: umfpack.hh:203
UMFPack(const Matrix &matrix, int verbose=0)
Construct a solver object from a BCRSMatrix.
Definition: umfpack.hh:227
void setOption(unsigned int option, double value)
Set UMFPack-specific options.
Definition: umfpack.hh:393
Dune::ColCompMatrix< Matrix > UMFPackMatrix
The corresponding SuperLU Matrix type.
Definition: umfpack.hh:201
Dune::BlockVector< FieldVector< T, n >, typename A::template rebind< FieldVector< T, n > >::other > range_type
The type of the range of the solver.
Definition: umfpack.hh:211
void apply(T *x, T *b)
additional apply method with c-arrays in analogy to superlu
Definition: umfpack.hh:367
UMFPack()
default constructor
Definition: umfpack.hh:257
UMFPack(const char *file, int verbose=0)
try loading a decomposition from file
Definition: umfpack.hh:302
virtual SolverCategory::Category category() const
Category of the solver (see SolverCategory::Category)
Definition: umfpack.hh:214
virtual void apply(domain_type &x, range_type &b, double reduction, InverseOperatorResult &res)
apply inverse operator, with given convergence criteria.
Definition: umfpack.hh:356
void saveDecomposition(const char *file)
saves a decomposition to a file
Definition: umfpack.hh:404
Dune namespace.
Definition: alignedallocator.hh:10
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Inititializer for the ColCompMatrix as needed by OverlappingSchwarz.
Definition: colcompmatrix.hh:154
Statistics about the application of an inverse operator.
Definition: solver.hh:41
double elapsed
Elapsed time in seconds.
Definition: solver.hh:74
int iterations
Number of iterations.
Definition: solver.hh:59
bool converged
True if convergence criterion has been met.
Definition: solver.hh:65
Category
Definition: solvercategory.hh:21
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 2, 22:35, 2024)