Dune Core Modules (2.6.0)

raviartthomas2cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH
4#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH
5
6#include <vector>
7
9
10namespace Dune
11{
12
21 template<class LB>
23 {
24
25 public:
28 {
29 sign0 = sign1 = sign2 = sign3 = 1.0;
30 }
31
38 {
39 sign0 = sign1 = sign2 = sign3 = 1.0;
40 if (s & 1)
41 {
42 sign0 *= -1.0;
43 }
44 if (s & 2)
45 {
46 sign1 *= -1.0;
47 }
48 if (s & 4)
49 {
50 sign2 *= -1.0;
51 }
52 if (s & 8)
53 {
54 sign3 *= -1.0;
55 }
56
57 n0[0] = -1.0;
58 n0[1] = 0.0;
59 n1[0] = 1.0;
60 n1[1] = 0.0;
61 n2[0] = 0.0;
62 n2[1] = -1.0;
63 n3[0] = 0.0;
64 n3[1] = 1.0;
65 }
66
75 template<typename F, typename C>
76 void interpolate (const F& f, std::vector<C>& out) const
77 {
78 // f gives v*outer normal at a point on the edge!
79 typedef typename LB::Traits::RangeFieldType Scalar;
80 typedef typename LB::Traits::DomainFieldType Vector;
81 typename F::Traits::RangeType y;
82
83 out.resize(24);
84 fill(out.begin(), out.end(), 0.0);
85
86 const int qOrder = 6;
88
89 for (typename QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
90 {
91 Scalar qPos = it->position();
92 typename LB::Traits::DomainType localPos;
93
94 localPos[0] = 0.0;
95 localPos[1] = qPos;
96 f.evaluate(localPos, y);
97 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
98 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
99 out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0;
100
101 localPos[0] = 1.0;
102 localPos[1] = qPos;
103 f.evaluate(localPos, y);
104 out[3] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1;
105 out[4] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
106 out[5] += (y[0]*n1[0] + y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1;
107
108 localPos[0] = qPos;
109 localPos[1] = 0.0;
110 f.evaluate(localPos, y);
111 out[6] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
112 out[7] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
113 out[8] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2;
114
115 localPos[0] = qPos;
116 localPos[1] = 1.0;
117 f.evaluate(localPos, y);
118 out[9] += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
119 out[10] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
120 out[11] += (y[0]*n3[0] + y[1]*n3[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign3;
121 }
122
124
125 for (typename QuadratureRule<Vector,2>::const_iterator it = rule2.begin();
126 it != rule2.end(); ++it)
127 {
128 FieldVector<double,2> qPos = it->position();
129
130 f.evaluate(qPos, y);
131 out[12] += y[0]*it->weight();
132 out[13] += y[1]*it->weight();
133 out[14] += y[0]*qPos[0]*it->weight();
134 out[15] += y[1]*qPos[0]*it->weight();
135 out[16] += y[0]*qPos[1]*it->weight();
136 out[17] += y[1]*qPos[1]*it->weight();
137 out[18] += y[0]*qPos[0]*qPos[1]*it->weight();
138 out[19] += y[1]*qPos[0]*qPos[1]*it->weight();
139 out[20] += y[0]*qPos[1]*qPos[1]*it->weight();
140 out[21] += y[1]*qPos[0]*qPos[0]*it->weight();
141 out[22] += y[0]*qPos[0]*qPos[1]*qPos[1]*it->weight();
142 out[23] += y[1]*qPos[0]*qPos[0]*qPos[1]*it->weight();
143 }
144 }
145
146 private:
147 typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
148 typename LB::Traits::DomainType n0, n1, n2, n3;
149 };
150}
151#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:93
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:97
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:225
Second order Raviart-Thomas shape functions on the reference triangle.
Definition: raviartthomas2cube2dlocalinterpolation.hh:23
void interpolate(const F &f, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas2cube2dlocalinterpolation.hh:76
RT2Cube2DLocalInterpolation()
Standard constructor.
Definition: raviartthomas2cube2dlocalinterpolation.hh:27
RT2Cube2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 8.
Definition: raviartthomas2cube2dlocalinterpolation.hh:37
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:705
Dune namespace.
Definition: alignedallocator.hh:10
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 24, 23:30, 2024)