Dune Core Modules (2.6.0)

raviartthomas1cube3dlocalinterpolation.hh
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
4 #define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
5 
6 #include <vector>
7 
9 
10 namespace Dune
11 {
20  template<class LB>
22  {
23 
24  public:
27  {
28  sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
29  }
30 
36  RT1Cube3DLocalInterpolation (unsigned int s)
37  {
38  sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
39  if (s & 1)
40  {
41  sign0 = -1.0;
42  }
43  if (s & 2)
44  {
45  sign1 = -1.0;
46  }
47  if (s & 4)
48  {
49  sign2 = -1.0;
50  }
51  if (s & 8)
52  {
53  sign3 = -1.0;
54  }
55  if (s & 16)
56  {
57  sign4 = -1.0;
58  }
59  if (s & 32)
60  {
61  sign5 = -1.0;
62  }
63 
64  n0[0] = -1.0;
65  n0[1] = 0.0;
66  n0[2] = 0.0;
67  n1[0] = 1.0;
68  n1[1] = 0.0;
69  n1[2] = 0.0;
70  n2[0] = 0.0;
71  n2[1] = -1.0;
72  n2[2] = 0.0;
73  n3[0] = 0.0;
74  n3[1] = 1.0;
75  n3[2] = 0.0;
76  n4[0] = 0.0;
77  n4[1] = 0.0;
78  n4[2] = -1.0;
79  n5[0] = 0.0;
80  n5[1] = 0.0;
81  n5[2] = 1.0;
82  }
83 
92  template<class F, class C>
93  void interpolate (const F& f, std::vector<C>& out) const
94  {
95  // f gives v*outer normal at a point on the edge!
96  typedef typename LB::Traits::RangeFieldType Scalar;
97  typedef typename LB::Traits::DomainFieldType Vector;
98  typename F::Traits::RangeType y;
99 
100  out.resize(36);
101  fill(out.begin(), out.end(), 0.0);
102 
103  const int qOrder = 3;
105 
106  for (typename QuadratureRule<Scalar,2>::const_iterator it = rule1.begin();
107  it != rule1.end(); ++it)
108  {
109  Dune::FieldVector<Scalar,2> qPos = it->position();
110  typename LB::Traits::DomainType localPos;
111 
112  localPos[0] = 0.0;
113  localPos[1] = qPos[0];
114  localPos[2] = qPos[1];
115  f.evaluate(localPos, y);
116  out[0] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*it->weight()*sign0;
117  out[6] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*(2.0*qPos[0] - 1.0)*it->weight();
118  out[12] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*(2.0*qPos[1] - 1.0)*it->weight();
119  out[18] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*it->weight();
120 
121  localPos[0] = 1.0;
122  localPos[1] = qPos[0];
123  localPos[2] = qPos[1];
124  f.evaluate(localPos, y);
125  out[1] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*it->weight()*sign1;
126  out[7] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*(1.0 - 2.0*qPos[0])*it->weight();
127  out[13] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*(1.0 - 2.0*qPos[1])*it->weight();
128  out[19] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*it->weight();
129 
130  localPos[0] = qPos[0];
131  localPos[1] = 0.0;
132  localPos[2] = qPos[1];
133  f.evaluate(localPos, y);
134  out[2] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*it->weight()*sign2;
135  out[8] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*(1.0 - 2.0*qPos[0])*it->weight();
136  out[14] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*(2.0*qPos[1] - 1.0)*it->weight();
137  out[20] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*it->weight();
138 
139  localPos[0] = qPos[0];
140  localPos[1] = 1.0;
141  localPos[2] = qPos[1];
142  f.evaluate(localPos, y);
143  out[3] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*it->weight()*sign3;
144  out[9] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*(2.0*qPos[0] - 1.0)*it->weight();
145  out[15] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*(1.0 - 2.0*qPos[1])*it->weight();
146  out[21] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*it->weight();
147 
148  localPos[0] = qPos[0];
149  localPos[1] = qPos[1];
150  localPos[2] = 0.0;
151  f.evaluate(localPos, y);
152  out[4] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*it->weight()*sign4;
153  out[10] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*(1.0 - 2.0*qPos[0])*it->weight();
154  out[16] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*(1.0 - 2.0*qPos[1])*it->weight();
155  out[22] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*it->weight();
156 
157  localPos[0] = qPos[0];
158  localPos[1] = qPos[1];
159  localPos[2] = 1.0;
160  f.evaluate(localPos, y);
161  out[5] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*it->weight()*sign5;
162  out[11] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*(2.0*qPos[0] - 1.0)*it->weight();
163  out[17] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*(2.0*qPos[1] - 1.0)*it->weight();
164  out[23] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*it->weight();
165  }
166 
168  for (typename QuadratureRule<Vector,3>::const_iterator it = rule2.begin();
169  it != rule2.end(); ++it)
170  {
171  FieldVector<double,3> qPos = it->position();
172 
173  f.evaluate(qPos, y);
174  out[24] += y[0]*it->weight();
175  out[25] += y[1]*it->weight();
176  out[26] += y[2]*it->weight();
177  out[27] += y[0]*qPos[1]*it->weight();
178  out[28] += y[0]*qPos[2]*it->weight();
179  out[29] += y[1]*qPos[0]*it->weight();
180  out[30] += y[1]*qPos[2]*it->weight();
181  out[31] += y[2]*qPos[0]*it->weight();
182  out[32] += y[2]*qPos[1]*it->weight();
183  out[33] += y[0]*qPos[1]*qPos[2]*it->weight();
184  out[34] += y[1]*qPos[0]*qPos[2]*it->weight();
185  out[35] += y[2]*qPos[0]*qPos[1]*it->weight();
186  }
187  }
188 
189  private:
190  typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3, sign4, sign5;
191  typename LB::Traits::DomainType n0, n1, n2, n3, n4, n5;
192  };
193 }
194 #endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:93
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:97
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:225
First order Raviart-Thomas shape functions on the reference hexahedron.
Definition: raviartthomas1cube3dlocalinterpolation.hh:22
void interpolate(const F &f, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas1cube3dlocalinterpolation.hh:93
RT1Cube3DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 64.
Definition: raviartthomas1cube3dlocalinterpolation.hh:36
RT1Cube3DLocalInterpolation()
Standard constructor.
Definition: raviartthomas1cube3dlocalinterpolation.hh:26
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:705
Dune namespace.
Definition: alignedallocator.hh:10
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (Apr 27, 22:29, 2024)