Dune Core Modules (2.6.0)
prismp2localbasis.hh
60 out[0] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
73 out[1] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
86 out[2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
99 out[3] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
112 out[4] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
125 out[5] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
138 out[6] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
151 out[7] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
164 out[8] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
177 out[9] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
190 out[10] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
203 out[11] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
216 out[12] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
229 out[13] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
242 out[14] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
255 out[15] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
268 out[16] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
281 out[17] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1])*(a1d + in[2]*b1d + in[2]*in[2]*c1d);
316 out[0][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
338 out[1][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
359 out[2][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
381 out[3][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
403 out[4][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
425 out[5][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
448 out[6][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
470 out[7][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
492 out[8][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
516 out[9][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
537 out[10][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
538 out[10][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
539 out[10][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
559 out[11][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
560 out[11][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
561 out[11][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
582 out[12][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
583 out[12][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
584 out[12][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
604 out[13][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
605 out[13][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
606 out[13][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
626 out[14][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
627 out[14][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
628 out[14][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
649 out[15][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
650 out[15][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
651 out[15][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
673 out[16][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
674 out[16][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
675 out[16][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
696 out[17][0][0] = (aa[0] + bb[0][0]*in[0] + bb[1][0]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
697 out[17][0][1] = (aa[1] + bb[0][1]*in[0] + bb[1][1]*in[1]) * (a1d + in[2]*b1d + in[2]*in[2]*c1d);
698 out[17][0][2] = coeff * (a[0] + b[0]*in[0] + b[1]*in[1]) * (a[1] + c[0]*in[0] + c[1]*in[1]) * (b1d + 2*c1d*in[2]);
Quadratic Lagrange shape functions on the prism.
Definition: prismp2localbasis.hh:26
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: prismp2localbasis.hh:286
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: prismp2localbasis.hh:39
unsigned int size() const
number of shape functions
Definition: prismp2localbasis.hh:33
unsigned int order() const
Polynomial order of the shape functions.
Definition: prismp2localbasis.hh:787
void partial(const std::array< unsigned int, 3 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: prismp2localbasis.hh:703
LocalBasisTraits< D, 3, Dune::FieldVector< D, 3 >, R, 1, Dune::FieldVector< R, 1 >, Dune::FieldMatrix< R, 1, 3 > > Traits
export type traits for function signature
Definition: prismp2localbasis.hh:30
Implements a matrix constructed from a given type representing a field and compile-time given number ...
T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:331
|
Legal Statements / Impressum |
Hosted by TU Dresden |
generated with Hugo v0.111.3
(Nov 24, 23:30, 2024)