Dune Core Modules (2.6.0)

pk2dlocalbasis.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_PK2DLOCALBASIS_HH
4#define DUNE_PK2DLOCALBASIS_HH
5
6#include <numeric>
7
9
10#include <dune/localfunctions/common/localbasis.hh>
11
12namespace Dune
13{
26 template<class D, class R, unsigned int k>
28 {
29 public:
30
32 enum {N = (k+1)*(k+2)/2};
33
37 enum {O = k};
38
41
44 {
45 for (unsigned int i=0; i<=k; i++)
46 pos_[i] = (1.0*i)/std::max(k,(unsigned int)1);
47 }
48
50 unsigned int size () const
51 {
52 return N;
53 }
54
56 inline void evaluateFunction (const typename Traits::DomainType& x,
57 std::vector<typename Traits::RangeType>& out) const
58 {
59 out.resize(N);
60 // specialization for k==0, not clear whether that is needed
61 if (k==0) {
62 out[0] = 1;
63 return;
64 }
65
66 int n=0;
67 for (unsigned int j=0; j<=k; j++)
68 for (unsigned int i=0; i<=k-j; i++)
69 {
70 out[n] = 1.0;
71 for (unsigned int alpha=0; alpha<i; alpha++)
72 out[n] *= (x[0]-pos_[alpha])/(pos_[i]-pos_[alpha]);
73 for (unsigned int beta=0; beta<j; beta++)
74 out[n] *= (x[1]-pos_[beta])/(pos_[j]-pos_[beta]);
75 for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
76 out[n] *= (pos_[gamma]-x[0]-x[1])/(pos_[gamma]-pos_[i]-pos_[j]);
77 n++;
78 }
79 }
80
82 inline void
83 evaluateJacobian (const typename Traits::DomainType& x, // position
84 std::vector<typename Traits::JacobianType>& out) const // return value
85 {
86 out.resize(N);
87
88 // specialization for k==0, not clear whether that is needed
89 if (k==0) {
90 out[0][0][0] = 0; out[0][0][1] = 0;
91 return;
92 }
93
94 int n=0;
95 for (unsigned int j=0; j<=k; j++)
96 for (unsigned int i=0; i<=k-j; i++)
97 {
98 // x_0 derivative
99 out[n][0][0] = 0.0;
100 R factor=1.0;
101 for (unsigned int beta=0; beta<j; beta++)
102 factor *= (x[1]-pos_[beta])/(pos_[j]-pos_[beta]);
103 for (unsigned int a=0; a<i; a++)
104 {
105 R product=factor;
106 for (unsigned int alpha=0; alpha<i; alpha++)
107 if (alpha==a)
108 product *= D(1)/(pos_[i]-pos_[alpha]);
109 else
110 product *= (x[0]-pos_[alpha])/(pos_[i]-pos_[alpha]);
111 for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
112 product *= (pos_[gamma]-x[0]-x[1])/(pos_[gamma]-pos_[i]-pos_[j]);
113 out[n][0][0] += product;
114 }
115 for (unsigned int c=i+j+1; c<=k; c++)
116 {
117 R product=factor;
118 for (unsigned int alpha=0; alpha<i; alpha++)
119 product *= (x[0]-pos_[alpha])/(pos_[i]-pos_[alpha]);
120 for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
121 if (gamma==c)
122 product *= -D(1)/(pos_[gamma]-pos_[i]-pos_[j]);
123 else
124 product *= (pos_[gamma]-x[0]-x[1])/(pos_[gamma]-pos_[i]-pos_[j]);
125 out[n][0][0] += product;
126 }
127
128 // x_1 derivative
129 out[n][0][1] = 0.0;
130 factor = 1.0;
131 for (unsigned int alpha=0; alpha<i; alpha++)
132 factor *= (x[0]-pos_[alpha])/(pos_[i]-pos_[alpha]);
133 for (unsigned int b=0; b<j; b++)
134 {
135 R product=factor;
136 for (unsigned int beta=0; beta<j; beta++)
137 if (beta==b)
138 product *= D(1)/(pos_[j]-pos_[beta]);
139 else
140 product *= (x[1]-pos_[beta])/(pos_[j]-pos_[beta]);
141 for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
142 product *= (pos_[gamma]-x[0]-x[1])/(pos_[gamma]-pos_[i]-pos_[j]);
143 out[n][0][1] += product;
144 }
145 for (unsigned int c=i+j+1; c<=k; c++)
146 {
147 R product=factor;
148 for (unsigned int beta=0; beta<j; beta++)
149 product *= (x[1]-pos_[beta])/(pos_[j]-pos_[beta]);
150 for (unsigned int gamma=i+j+1; gamma<=k; gamma++)
151 if (gamma==c)
152 product *= -D(1)/(pos_[gamma]-pos_[i]-pos_[j]);
153 else
154 product *= (pos_[gamma]-x[0]-x[1])/(pos_[gamma]-pos_[i]-pos_[j]);
155 out[n][0][1] += product;
156 }
157
158 n++;
159 }
160
161 }
162
168 void partial(const std::array<unsigned int,2>& order,
169 const typename Traits::DomainType& in,
170 std::vector<typename Traits::RangeType>& out) const
171 {
172 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
173
174 switch (totalOrder)
175 {
176 case 0:
177 evaluateFunction(in,out);
178 break;
179 case 1:
180 {
181 int direction = std::find(order.begin(), order.end(), 1)-order.begin();
182
183 out.resize(N);
184
185 int n=0;
186 for (unsigned int j=0; j<=k; j++)
187 {
188 for (unsigned int i=0; i<=k-j; i++, n++)
189 {
190 out[n] = 0.0;
191 for (unsigned int no1=0; no1 < k; no1++)
192 {
193 R factor = lagrangianFactorDerivative(direction, no1, i, j, in);
194 for (unsigned int no2=0; no2 < k; no2++)
195 if (no1 != no2)
196 factor *= lagrangianFactor(no2, i, j, in);
197
198 out[n] += factor;
199 }
200 }
201 }
202
203 break;
204 }
205 case 2:
206 {
207 out.resize(N);
208
209 // specialization for k<2, not clear whether that is needed
210 if (k<2)
211 {
212 std::fill(out.begin(), out.end(), 0.0);
213 return;
214 }
215
216 std::array<int,2> directions;
217 unsigned int counter = 0;
218 auto nonconstOrder = order; // need a copy that I can modify
219 for (int i=0; i<2; i++)
220 {
221 while (nonconstOrder[i])
222 {
223 directions[counter++] = i;
224 nonconstOrder[i]--;
225 }
226 }
227
228 //f = prod_{i} f_i -> dxa dxb f = sum_{i} {dxa f_i sum_{k \neq i} dxb f_k prod_{l \neq k,i} f_l
229 int n=0;
230 for (unsigned int j=0; j<=k; j++)
231 {
232 for (unsigned int i=0; i<=k-j; i++, n++)
233 {
234 R res = 0.0;
235
236 for (unsigned int no1=0; no1 < k; no1++)
237 {
238 R factor1 = lagrangianFactorDerivative(directions[0], no1, i, j, in);
239 for (unsigned int no2=0; no2 < k; no2++)
240 {
241 if (no1 == no2)
242 continue;
243 R factor2 = factor1*lagrangianFactorDerivative(directions[1], no2, i, j, in);
244 for (unsigned int no3=0; no3 < k; no3++)
245 {
246 if (no3 == no1 || no3 == no2)
247 continue;
248 factor2 *= lagrangianFactor(no3, i, j, in);
249 }
250 res += factor2;
251 }
252 }
253 out[n] = res;
254 }
255 }
256
257 break;
258 }
259 default:
260 DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");
261 }
262 }
263
265 unsigned int order () const
266 {
267 return k;
268 }
269
270 private:
272 typename Traits::RangeType lagrangianFactor(const int no, const int i, const int j, const typename Traits::DomainType& x) const
273 {
274 if ( no < i)
275 return (x[0]-pos_[no])/(pos_[i]-pos_[no]);
276 if (no < i+j)
277 return (x[1]-pos_[no-i])/(pos_[j]-pos_[no-i]);
278 return (pos_[no+1]-x[0]-x[1])/(pos_[no+1]-pos_[i]-pos_[j]);
279 }
280
284 typename Traits::RangeType lagrangianFactorDerivative(const int direction, const int no, const int i, const int j, const typename Traits::DomainType& x) const
285 {
286 if ( no < i)
287 return (direction == 0) ? 1.0/(pos_[i]-pos_[no]) : 0;
288
289 if (no < i+j)
290 return (direction == 0) ? 0: 1.0/(pos_[j]-pos_[no-i]);
291
292 return -1.0/(pos_[no+1]-pos_[i]-pos_[j]);
293 }
294
295 D pos_[k+1]; // positions on the interval
296 };
297
298}
299#endif
A dense n x m matrix.
Definition: fmatrix.hh:68
vector space out of a tensor product of fields.
Definition: fvector.hh:93
Default exception for dummy implementations.
Definition: exceptions.hh:261
Lagrange shape functions of arbitrary order on the reference triangle.
Definition: pk2dlocalbasis.hh:28
void evaluateFunction(const typename Traits::DomainType &x, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: pk2dlocalbasis.hh:56
unsigned int size() const
number of shape functions
Definition: pk2dlocalbasis.hh:50
void partial(const std::array< unsigned int, 2 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of any order of all shape functions.
Definition: pk2dlocalbasis.hh:168
void evaluateJacobian(const typename Traits::DomainType &x, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: pk2dlocalbasis.hh:83
Pk2DLocalBasis()
Standard constructor.
Definition: pk2dlocalbasis.hh:43
unsigned int order() const
Polynomial order of the shape functions.
Definition: pk2dlocalbasis.hh:265
Implements a matrix constructed from a given type representing a field and compile-time given number ...
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:331
Dune namespace.
Definition: alignedallocator.hh:10
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:32
D DomainType
domain type
Definition: localbasis.hh:43
R RangeType
range type
Definition: localbasis.hh:55
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 26, 23:30, 2024)