Dune Core Modules (2.6.0)
identitymatrix.hh
Go to the documentation of this file.
4#warning Deprecated since dune-common 2.5: If you really do need an identity matrix, use DiagonalMatrix or ScalarIdentityMatrix (from dune-istl) instead!
Macro for wrapping boundary checks.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Type traits to determine the type of reals (when working with complex numbers)
#define DUNE_ASSERT_BOUNDS(cond)
If DUNE_CHECK_BOUNDS is defined: check if condition cond holds; otherwise, do nothing.
Definition: boundschecking.hh:28
decltype(auto) apply(F &&f, ArgTuple &&args)
Apply function with arguments given as tuple.
Definition: apply.hh:58
Some useful basic math stuff.
FieldTraits< field_type >::real_type frobenius_norm() const
frobenius norm: sqrt(sum over squared values of entries)
Definition: identitymatrix.hh:130
void mmhv(const X &x, Y &y) const
y -= A^H x
Definition: identitymatrix.hh:100
FieldTraits< field_type >::real_type infinity_norm_real() const
simplified infinity norm (uses Manhattan norm for complex values)
Definition: identitymatrix.hh:148
void mmtv(const X &x, Y &y) const
y -= A^T x
Definition: identitymatrix.hh:93
void usmtv(const typename FieldTraits< Y >::field_type &alpha, const X &x, Y &y) const
y += alpha A^T x
Definition: identitymatrix.hh:115
void usmhv(const typename FieldTraits< Y >::field_type &alpha, const X &x, Y &y) const
y += alpha A^H x
Definition: identitymatrix.hh:123
constexpr size_type rows() const
return number of rows
Definition: identitymatrix.hh:45
constexpr size_type cols() const
return number of columns
Definition: identitymatrix.hh:47
FieldTraits< field_type >::real_type frobenius_norm2() const
square of frobenius norm, need for block recursion
Definition: identitymatrix.hh:136
FieldTraits< field_type >::real_type infinity_norm() const
infinity norm (row sum norm, how to generalize for blocks?)
Definition: identitymatrix.hh:142
void usmv(const typename FieldTraits< Y >::field_type &alpha, const X &x, Y &y) const
y += alpha A x
Definition: identitymatrix.hh:107
void umhv(const X &x, Y &y) const
y += A^H x
Definition: identitymatrix.hh:79
void umtv(const X &x, Y &y) const
y += A^T x
Definition: identitymatrix.hh:72
|
Legal Statements / Impressum |
Hosted by TU Dresden |
generated with Hugo v0.111.3
(Nov 24, 23:30, 2024)