Dune Core Modules (2.6.0)

fmatrixev.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_FMATRIXEIGENVALUES_HH
4#define DUNE_FMATRIXEIGENVALUES_HH
5
10#include <iostream>
11#include <cmath>
12#include <cassert>
13
17#include <dune/common/math.hh>
18
19namespace Dune {
20
26 namespace FMatrixHelp {
27
28 // defined in fmatrixev.cc
29 extern void eigenValuesLapackCall(
30 const char* jobz, const char* uplo, const long
31 int* n, double* a, const long int* lda, double* w,
32 double* work, const long int* lwork, long int* info);
33
34 extern void eigenValuesNonsymLapackCall(
35 const char* jobvl, const char* jobvr, const long
36 int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
37 const long int* ldvl, double* vr, const long int* ldvr, double* work,
38 const long int* lwork, const long int* info);
39
45 template <typename K>
46 static void eigenValues(const FieldMatrix<K, 1, 1>& matrix,
47 FieldVector<K, 1>& eigenvalues)
48 {
49 eigenvalues[0] = matrix[0][0];
50 }
51
57 template <typename K>
58 static void eigenValues(const FieldMatrix<K, 2, 2>& matrix,
59 FieldVector<K, 2>& eigenvalues)
60 {
61 using std::sqrt;
62 const K detM = matrix[0][0] * matrix[1][1] - matrix[1][0] * matrix[0][1];
63 const K p = 0.5 * (matrix[0][0] + matrix [1][1]);
64 K q = p * p - detM;
65 if( q < 0 && q > -1e-14 ) q = 0;
66 if (q < 0)
67 {
68 std::cout << matrix << std::endl;
69 // Complex eigenvalues are either caused by non-symmetric matrices or by round-off errors
70 DUNE_THROW(MathError, "Complex eigenvalue detected (which this implementation cannot handle).");
71 }
72
73 // get square root
74 q = sqrt(q);
75
76 // store eigenvalues in ascending order
77 eigenvalues[0] = p - q;
78 eigenvalues[1] = p + q;
79 }
80
93 template <typename K>
94 static void eigenValues(const FieldMatrix<K, 3, 3>& matrix,
95 FieldVector<K, 3>& eigenvalues)
96 {
97 using std::sqrt;
98 using std::acos;
99 const K pi = MathematicalConstants<K>::pi();
100 K p1 = matrix[0][1]*matrix[0][1] + matrix[0][2]*matrix[0][2] + matrix[1][2]*matrix[1][2];
101
102 if (p1 <= 1e-8)
103 {
104 // A is diagonal.
105 eigenvalues[0] = matrix[0][0];
106 eigenvalues[1] = matrix[1][1];
107 eigenvalues[2] = matrix[2][2];
108 }
109 else
110 {
111 // q = trace(A)/3
112 K q = 0;
113 for (int i=0; i<3; i++)
114 q += matrix[i][i]/3.0;
115
116 K p2 = (matrix[0][0] - q)*(matrix[0][0] - q) + (matrix[1][1] - q)*(matrix[1][1] - q) + (matrix[2][2] - q)*(matrix[2][2] - q) + 2 * p1;
117 K p = sqrt(p2 / 6);
118 // B = (1 / p) * (A - q * I); // I is the identity matrix
120 for (int i=0; i<3; i++)
121 for (int j=0; j<3; j++)
122 B[i][j] = (1/p) * (matrix[i][j] - q*(i==j));
123
124 K r = B.determinant() / 2.0;
125
126 // In exact arithmetic for a symmetric matrix -1 <= r <= 1
127 // but computation error can leave it slightly outside this range.
128 K phi;
129 if (r <= -1)
130 phi = pi / 3.0;
131 else if (r >= 1)
132 phi = 0;
133 else
134 phi = acos(r) / 3;
135
136 // the eigenvalues satisfy eig[2] <= eig[1] <= eig[0]
137 eigenvalues[2] = q + 2 * p * cos(phi);
138 eigenvalues[0] = q + 2 * p * cos(phi + (2*pi/3));
139 eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2]; // since trace(matrix) = eig1 + eig2 + eig3
140 }
141 }
142
150 template <int dim, typename K>
151 static void eigenValues(const FieldMatrix<K, dim, dim>& matrix,
152 FieldVector<K, dim>& eigenvalues)
153 {
154 {
155 const long int N = dim ;
156 const char jobz = 'n'; // only calculate eigenvalues
157 const char uplo = 'u'; // use upper triangular matrix
158
159 // length of matrix vector
160 const long int w = N * N ;
161
162 // matrix to put into dsyev
163 double matrixVector[dim * dim];
164
165 // copy matrix
166 int row = 0;
167 for(int i=0; i<dim; ++i)
168 {
169 for(int j=0; j<dim; ++j, ++row)
170 {
171 matrixVector[ row ] = matrix[ i ][ j ];
172 }
173 }
174
175 // working memory
176 double workSpace[dim * dim];
177
178 // return value information
179 long int info = 0;
180
181 // call LAPACK routine (see fmatrixev.cc)
182 eigenValuesLapackCall(&jobz, &uplo, &N, &matrixVector[0], &N,
183 &eigenvalues[0], &workSpace[0], &w, &info);
184
185 if( info != 0 )
186 {
187 std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
188 DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
189 }
190 }
191 }
199 template <int dim, typename K, class C>
201 FieldVector<C, dim>& eigenValues)
202 {
203 {
204 const long int N = dim ;
205 const char jobvl = 'n';
206 const char jobvr = 'n';
207
208 // matrix to put into dgeev
209 double matrixVector[dim * dim];
210
211 // copy matrix
212 int row = 0;
213 for(int i=0; i<dim; ++i)
214 {
215 for(int j=0; j<dim; ++j, ++row)
216 {
217 matrixVector[ row ] = matrix[ i ][ j ];
218 }
219 }
220
221 // working memory
222 double eigenR[dim];
223 double eigenI[dim];
224 double work[3*dim];
225
226 // return value information
227 long int info = 0;
228 long int lwork = 3*dim;
229
230 // call LAPACK routine (see fmatrixev_ext.cc)
231 eigenValuesNonsymLapackCall(&jobvl, &jobvr, &N, &matrixVector[0], &N,
232 &eigenR[0], &eigenI[0], 0, &N, 0, &N, &work[0],
233 &lwork, &info);
234
235 if( info != 0 )
236 {
237 std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
238 DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
239 }
240 for (int i=0; i<N; ++i) {
241 eigenValues[i].real = eigenR[i];
242 eigenValues[i].imag = eigenI[i];
243 }
244 }
245
246 }
247
248 } // end namespace FMatrixHelp
249
252} // end namespace Dune
253#endif
field_type determinant() const
calculates the determinant of this matrix
A dense n x m matrix.
Definition: fmatrix.hh:68
vector space out of a tensor product of fields.
Definition: fvector.hh:93
Default exception if a function was called while the object is not in a valid state for that function...
Definition: exceptions.hh:279
Default exception class for mathematical errors.
Definition: exceptions.hh:239
A few common exception classes.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
static void eigenValuesNonSym(const FieldMatrix< K, dim, dim > &matrix, FieldVector< C, dim > &eigenValues)
calculates the eigenvalues of a symmetric field matrix
Definition: fmatrixev.hh:200
static void eigenValues(const FieldMatrix< K, 1, 1 > &matrix, FieldVector< K, 1 > &eigenvalues)
calculates the eigenvalues of a symmetric field matrix
Definition: fmatrixev.hh:46
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
Some useful basic math stuff.
Dune namespace.
Definition: alignedallocator.hh:10
Provides commonly used mathematical constants.
Definition: math.hh:24
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 24, 23:30, 2024)