Dune Core Modules (2.6.0)

brezzidouglasmarini2simplex2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
4#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
5
6#include <vector>
7
9
10namespace Dune
11{
12
21 template<class LB>
23 {
24
25 public:
28 {
29 sign0 = sign1 = sign2 = 1.0;
30 }
31
38 {
39 sign0 = sign1 = sign2 = 1.0;
40 if (s & 1)
41 {
42 sign0 = -1.0;
43 }
44 if (s & 2)
45 {
46 sign1 = -1.0;
47 }
48 if (s & 4)
49 {
50 sign2 = -1.0;
51 }
52
53 m0[0] = 0.5;
54 m0[1] = 0.0;
55 m1[0] = 0.0;
56 m1[1] = 0.5;
57 m2[0] = 0.5;
58 m2[1] = 0.5;
59 n0[0] = 0.0;
60 n0[1] = -1.0;
61 n1[0] = -1.0;
62 n1[1] = 0.0;
63 n2[0] = 1.0/sqrt(2.0);
64 n2[1] = 1.0/sqrt(2.0);
65 c0 = 0.5*n0[0] - 1.0*n0[1];
66 c1 = -1.0*n1[0] + 0.5*n1[1];
67 c2 = 0.5*n2[0] + 0.5*n2[1];
68 }
69
78 template<typename F, typename C>
79 void interpolate(const F& f, std::vector<C>& out) const
80 {
81 // f gives v*outer normal at a point on the edge!
82 typedef typename LB::Traits::RangeFieldType Scalar;
83 typedef typename LB::Traits::DomainFieldType Vector;
84 typename F::Traits::RangeType y;
85
86 out.resize(12);
87 fill(out.begin(), out.end(), 0.0);
88
89 const int qOrder = 4;
91
92 for (typename Dune::QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
93 {
94 Scalar qPos = it->position();
95
96 typename LB::Traits::DomainType localPos;
97
98 localPos[0] = qPos;
99 localPos[1] = 0.0;
100 f.evaluate(localPos, y);
101 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0/c0;
102 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(1.0 - 2.0*qPos)*it->weight()/c0;
103 out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0/c0;
104
105 localPos[0] = 0.0;
106 localPos[1] = qPos;
107 f.evaluate(localPos, y);
108 out[3] += (y[0]*n1[0]+y[1]*n1[1])*it->weight()*sign1/c1;
109 out[4] += (y[0]*n1[0]+y[1]*n1[1])*(2.0*qPos-1.0)*it->weight()/c1;
110 out[5] += (y[0]*n1[0]+y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1/c1;
111
112 localPos[0] = 1.0 - qPos;
113 localPos[1] = qPos;
114 f.evaluate(localPos, y);
115 out[6] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2/c2;
116 out[7] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight()/c2;
117 out[8] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2/c2;
118 }
119
120 // a volume part is needed here for dofs: 9 10 11
122
123 for (typename QuadratureRule<Vector,2>::const_iterator it=rule2.begin(); it!=rule2.end(); ++it)
124 {
125 typename LB::Traits::DomainType localPos = it->position();
126 f.evaluate(localPos, y);
127
128 out[9] += y[0]*it->weight();
129 out[10] += y[1]*it->weight();
130 out[11] += (y[0]*(localPos[0]-2.0*localPos[0]*localPos[1]-localPos[0]*localPos[0])
131 +y[1]*(-localPos[1]+2.0*localPos[0]*localPos[1]+localPos[1]*localPos[1]))*it->weight();
132 }
133 }
134
135 private:
136 typename LB::Traits::RangeFieldType sign0, sign1, sign2;
137 typename LB::Traits::DomainType m0, m1, m2;
138 typename LB::Traits::DomainType n0, n1, n2;
139 typename LB::Traits::RangeFieldType c0, c1, c2;
140 };
141} // end namespace Dune
142#endif // DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
First order Brezzi-Douglas-Marini shape functions on triangles.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:23
BDM2Simplex2DLocalInterpolation()
Standard constructor.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:27
void interpolate(const F &f, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:79
BDM2Simplex2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 8.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:37
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:97
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:225
constexpr GeometryType simplex(unsigned int dim)
Returns a GeometryType representing a simplex of dimension dim.
Definition: type.hh:696
Dune namespace.
Definition: alignedallocator.hh:10
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 24, 23:30, 2024)