Dune Core Modules (2.6.0)

brezzidouglasmarini1cube2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_CUBE2D_LOCALINTERPOLATION_HH
4#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_CUBE2D_LOCALINTERPOLATION_HH
5
6#include <vector>
7
9
10namespace Dune
11{
12
21 template<class LB>
23 {
24
25 public:
28 {
29 sign0 = sign1 = sign2 = sign3 = 1.0;
30 }
31
38 {
39 sign0 = sign1 = sign2 = sign3 = 1.0;
40 if (s & 1)
41 {
42 sign0 = -1.0;
43 }
44 if (s & 2)
45 {
46 sign1 = -1.0;
47 }
48 if (s & 4)
49 {
50 sign2 = -1.0;
51 }
52 if (s & 8)
53 {
54 sign3 = -1.0;
55 }
56
57 n0[0] = -1.0;
58 n0[1] = 0.0;
59 n1[0] = 1.0;
60 n1[1] = 0.0;
61 n2[0] = 0.0;
62 n2[1] = -1.0;
63 n3[0] = 0.0;
64 n3[1] = 1.0;
65 }
66
75 template<typename F, typename C>
76 void interpolate (const F& f, std::vector<C>& out) const
77 {
78 // f gives v*outer normal at a point on the edge!
79 typedef typename LB::Traits::RangeFieldType Scalar;
80 //typedef typename LB::Traits::DomainFieldType Vector;
81 typename F::Traits::RangeType y;
82
83 out.resize(8);
84 fill(out.begin(), out.end(), 0.0);
85
86 const int qOrder = 4;
88
89 for (typename QuadratureRule<Scalar,1>::const_iterator it = rule.begin();
90 it != rule.end(); ++it)
91 {
92 Scalar qPos = it->position();
93 typename LB::Traits::DomainType localPos;
94
95 localPos[0] = 0.0;
96 localPos[1] = qPos;
97 f.evaluate(localPos, y);
98 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
99 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
100
101 localPos[0] = 1.0;
102 localPos[1] = qPos;
103 f.evaluate(localPos, y);
104 out[2] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1;
105 out[3] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
106
107 localPos[0] = qPos;
108 localPos[1] = 0.0;
109 f.evaluate(localPos, y);
110 out[4] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
111 out[5] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
112
113 localPos[0] = qPos;
114 localPos[1] = 1.0;
115 f.evaluate(localPos, y);
116 out[6] += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
117 out[7] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
118 }
119 }
120
121 private:
122 typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
123 typename LB::Traits::DomainType n0, n1, n2, n3;
124 };
125}
126#endif // DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_CUBE2D_LOCALINTERPOLATION_HH
First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:23
void interpolate(const F &f, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:76
BDM1Cube2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 16.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:37
BDM1Cube2DLocalInterpolation()
Standard constructor.
Definition: brezzidouglasmarini1cube2dlocalinterpolation.hh:27
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:97
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:225
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:705
Dune namespace.
Definition: alignedallocator.hh:10
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 26, 23:30, 2024)