Dune Core Modules (2.6.0)

aggregates.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_AMG_AGGREGATES_HH
4 #define DUNE_AMG_AGGREGATES_HH
5 
6 
7 #include "parameters.hh"
8 #include "graph.hh"
9 #include "properties.hh"
10 #include "combinedfunctor.hh"
11 
12 #include <dune/common/timer.hh>
15 #include <dune/common/sllist.hh>
16 #include <dune/common/unused.hh>
17 #include <dune/common/ftraits.hh>
18 
19 #include <utility>
20 #include <set>
21 #include <algorithm>
22 #include <complex>
23 #include <limits>
24 #include <ostream>
25 #include <tuple>
26 
27 namespace Dune
28 {
29  namespace Amg
30  {
31 
45  template<class T>
46  class AggregationCriterion : public T
47  {
48 
49  public:
53  typedef T DependencyPolicy;
54 
65  : T()
66  {}
67 
68  AggregationCriterion(const Parameters& parms)
69  : T(parms)
70  {}
80  void setDefaultValuesIsotropic(std::size_t dim, std::size_t diameter=2)
81  {
82  this->setMaxDistance(diameter-1);
83  std::size_t csize=1;
84 
85  for(; dim>0; dim--) {
86  csize*=diameter;
87  this->setMaxDistance(this->maxDistance()+diameter-1);
88  }
89  this->setMinAggregateSize(csize);
90  this->setMaxAggregateSize(static_cast<std::size_t>(csize*1.5));
91  }
92 
103  void setDefaultValuesAnisotropic(std::size_t dim,std::size_t diameter=2)
104  {
105  setDefaultValuesIsotropic(dim, diameter);
106  this->setMaxDistance(this->maxDistance()+dim-1);
107  }
108  };
109 
110  template<class T>
111  std::ostream& operator<<(std::ostream& os, const AggregationCriterion<T>& criterion)
112  {
113  os<<"{ maxdistance="<<criterion.maxDistance()<<" minAggregateSize="
114  <<criterion.minAggregateSize()<< " maxAggregateSize="<<criterion.maxAggregateSize()
115  <<" connectivity="<<criterion.maxConnectivity()<<" debugLevel="<<criterion.debugLevel()<<"}";
116  return os;
117  }
118 
130  template<class M, class N>
132  {
133  public:
137  typedef M Matrix;
138 
142  typedef N Norm;
143 
147  typedef typename Matrix::row_type Row;
148 
153 
154  void init(const Matrix* matrix);
155 
156  void initRow(const Row& row, int index);
157 
158  void examine(const ColIter& col);
159 
160  template<class G>
161  void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);
162 
163  bool isIsolated();
164 
165 
167  : Parameters(parms)
168  {}
170  : Parameters()
171  {}
172 
173  protected:
175  const Matrix* matrix_;
177  typedef typename Matrix::field_type field_type;
178  typedef typename FieldTraits<field_type>::real_type real_type;
179  real_type maxValue_;
183  int row_;
185  real_type diagonal_;
186  std::vector<real_type> vals_;
187  typename std::vector<real_type>::iterator valIter_;
188 
189  };
190 
191 
192  template<class M, class N>
193  inline void SymmetricMatrixDependency<M,N>::init(const Matrix* matrix)
194  {
195  matrix_ = matrix;
196  }
197 
198  template<class M, class N>
199  inline void SymmetricMatrixDependency<M,N>::initRow(const Row& row, int index)
200  {
201  vals_.assign(row.size(), 0.0);
202  assert(vals_.size()==row.size());
203  valIter_=vals_.begin();
204 
205  maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min());
206  diagonal_=norm_(row[index]);
207  row_ = index;
208  }
209 
210  template<class M, class N>
211  inline void SymmetricMatrixDependency<M,N>::examine(const ColIter& col)
212  {
213  // skip positive offdiagonals if norm preserves sign of them.
214  real_type eij = norm_(*col);
215  if(!N::is_sign_preserving || eij<0) // || eji<0)
216  {
217  *valIter_ = eij/diagonal_*eij/norm_(matrix_->operator[](col.index())[col.index()]);
218  maxValue_ = std::max(maxValue_, *valIter_);
219  }else
220  *valIter_ =0;
221  ++valIter_;
222  }
223 
224  template<class M, class N>
225  template<class G>
226  inline void SymmetricMatrixDependency<M,N>::examine(G&, const typename G::EdgeIterator& edge, const ColIter&)
227  {
228  if(*valIter_ > alpha() * maxValue_) {
229  edge.properties().setDepends();
230  edge.properties().setInfluences();
231  }
232  ++valIter_;
233  }
234 
235  template<class M, class N>
236  inline bool SymmetricMatrixDependency<M,N>::isIsolated()
237  {
238  if(diagonal_==0)
239  DUNE_THROW(Dune::ISTLError, "No diagonal entry for row "<<row_<<".");
240  valIter_=vals_.begin();
241  return maxValue_ < beta();
242  }
243 
247  template<class M, class N>
248  class Dependency : public Parameters
249  {
250  public:
254  typedef M Matrix;
255 
259  typedef N Norm;
260 
264  typedef typename Matrix::row_type Row;
265 
270 
271  void init(const Matrix* matrix);
272 
273  void initRow(const Row& row, int index);
274 
275  void examine(const ColIter& col);
276 
277  template<class G>
278  void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);
279 
280  bool isIsolated();
281 
282  Dependency(const Parameters& parms)
283  : Parameters(parms)
284  {}
285 
286  Dependency()
287  : Parameters()
288  {}
289 
290  protected:
292  const Matrix* matrix_;
294  typedef typename Matrix::field_type field_type;
295  typedef typename FieldTraits<field_type>::real_type real_type;
296  real_type maxValue_;
300  int row_;
302  real_type diagonal_;
303  };
304 
308  template<class M, class N>
310  {
311  public:
315  typedef M Matrix;
316 
320  typedef N Norm;
321 
325  typedef typename Matrix::row_type Row;
326 
331 
332  void init(const Matrix* matrix);
333 
334  void initRow(const Row& row, int index);
335 
336  void examine(const ColIter& col);
337 
338  template<class G>
339  void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);
340 
341  bool isIsolated();
342 
343 
344  SymmetricDependency(const Parameters& parms)
345  : Parameters(parms)
346  {}
348  : Parameters()
349  {}
350 
351  protected:
353  const Matrix* matrix_;
355  typedef typename Matrix::field_type field_type;
356  typedef typename FieldTraits<field_type>::real_type real_type;
357  real_type maxValue_;
361  int row_;
363  real_type diagonal_;
364  };
365 
370  template<int N>
371  class Diagonal
372  {
373  public:
374  enum { /* @brief We preserve the sign.*/
375  is_sign_preserving = true
376  };
377 
382  template<class M>
383  typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
384  {
385  typedef typename M::field_type field_type;
386  typedef typename FieldTraits<field_type>::real_type real_type;
387  static_assert( std::is_convertible<field_type, real_type >::value,
388  "use of diagonal norm in AMG not implemented for complex field_type");
389  return m[N][N];
390  // possible implementation for complex types: return signed_abs(m[N][N]);
391  }
392 
393  private:
394 
396  template<typename T>
397  static T signed_abs(const T & v)
398  {
399  return v;
400  }
401 
403  template<typename T>
404  static T signed_abs(const std::complex<T> & v)
405  {
406  // return sign * abs_value
407  // in case of complex numbers this extends to using the csgn function to determine the sign
408  return csgn(v) * std::abs(v);
409  }
410 
412  template<typename T>
413  static T csgn(const T & v)
414  {
415  return (T(0) < v) - (v < T(0));
416  }
417 
419  template<typename T>
420  static T csgn(std::complex<T> a)
421  {
422  return csgn(a.real())+(a.real() == 0.0)*csgn(a.imag());
423  }
424 
425  };
426 
431  class FirstDiagonal : public Diagonal<0>
432  {};
433 
439  struct RowSum
440  {
441 
442  enum { /* @brief We preserve the sign.*/
443  is_sign_preserving = false
444  };
449  template<class M>
450  typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
451  {
452  return m.infinity_norm();
453  }
454  };
455 
456  struct FrobeniusNorm
457  {
458 
459  enum { /* @brief We preserve the sign.*/
460  is_sign_preserving = false
461  };
466  template<class M>
467  typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
468  {
469  return m.frobenius_norm();
470  }
471  };
472  struct AlwaysOneNorm
473  {
474 
475  enum { /* @brief We preserve the sign.*/
476  is_sign_preserving = false
477  };
482  template<class M>
483  typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
484  {
485  return 1;
486  }
487  };
497  template<class M, class Norm>
498  class SymmetricCriterion : public AggregationCriterion<SymmetricDependency<M,Norm> >
499  {
500  public:
501  SymmetricCriterion(const Parameters& parms)
503  {}
505  {}
506  };
507 
508 
520  template<class M, class Norm>
521  class UnSymmetricCriterion : public AggregationCriterion<Dependency<M,Norm> >
522  {
523  public:
524  UnSymmetricCriterion(const Parameters& parms)
526  {}
528  {}
529  };
530  // forward declaration
531  template<class G> class Aggregator;
532 
533 
541  template<class V>
543  {
544  public:
545 
549  static const V UNAGGREGATED;
550 
554  static const V ISOLATED;
558  typedef V VertexDescriptor;
559 
564 
570 
576 
581  {
582  public:
583  template<class EdgeIterator>
584  void operator()(const EdgeIterator& edge) const
585  {
586  DUNE_UNUSED_PARAMETER(edge);
587  }
588  };
589 
590 
595 
601  AggregatesMap(std::size_t noVertices);
602 
607 
619  template<class M, class G, class C>
620  std::tuple<int,int,int,int> buildAggregates(const M& matrix, G& graph, const C& criterion,
621  bool finestLevel);
622 
642  template<bool reset, class G, class F, class VM>
643  std::size_t breadthFirstSearch(const VertexDescriptor& start,
644  const AggregateDescriptor& aggregate,
645  const G& graph,
646  F& aggregateVisitor,
647  VM& visitedMap) const;
648 
672  template<bool remove, bool reset, class G, class L, class F1, class F2, class VM>
673  std::size_t breadthFirstSearch(const VertexDescriptor& start,
674  const AggregateDescriptor& aggregate,
675  const G& graph, L& visited, F1& aggregateVisitor,
676  F2& nonAggregateVisitor,
677  VM& visitedMap) const;
678 
684  void allocate(std::size_t noVertices);
685 
689  std::size_t noVertices() const;
690 
694  void free();
695 
702 
709 
710  typedef const AggregateDescriptor* const_iterator;
711 
712  const_iterator begin() const
713  {
714  return aggregates_;
715  }
716 
717  const_iterator end() const
718  {
719  return aggregates_+noVertices();
720  }
721 
722  typedef AggregateDescriptor* iterator;
723 
724  iterator begin()
725  {
726  return aggregates_;
727  }
728 
729  iterator end()
730  {
731  return aggregates_+noVertices();
732  }
733  private:
735  AggregatesMap(const AggregatesMap<V>&) = delete;
737  AggregatesMap<V>& operator=(const AggregatesMap<V>&) = delete;
738 
742  AggregateDescriptor* aggregates_;
743 
747  std::size_t noVertices_;
748  };
749 
753  template<class G, class C>
754  void buildDependency(G& graph,
755  const typename C::Matrix& matrix,
756  C criterion,
757  bool finestLevel);
758 
763  template<class G, class S>
764  class Aggregate
765  {
766 
767  public:
768 
769  /***
770  * @brief The type of the matrix graph we work with.
771  */
772  typedef G MatrixGraph;
777 
783 
788  typedef S VertexSet;
789 
791  typedef typename VertexSet::const_iterator const_iterator;
792 
796  typedef std::size_t* SphereMap;
797 
806  Aggregate(MatrixGraph& graph, AggregatesMap<Vertex>& aggregates,
807  VertexSet& connectivity, std::vector<Vertex>& front_);
808 
809  void invalidate()
810  {
811  --id_;
812  }
813 
820  void reconstruct(const Vertex& vertex);
821 
825  void seed(const Vertex& vertex);
826 
830  void add(const Vertex& vertex);
831 
832  void add(std::vector<Vertex>& vertex);
836  void clear();
837 
841  typename VertexSet::size_type size();
845  typename VertexSet::size_type connectSize();
846 
850  int id();
851 
854 
857 
858  private:
862  VertexSet vertices_;
863 
868  int id_;
869 
873  MatrixGraph& graph_;
874 
878  AggregatesMap<Vertex>& aggregates_;
879 
883  VertexSet& connected_;
884 
888  std::vector<Vertex>& front_;
889  };
890 
894  template<class G>
896  {
897  public:
898 
902  typedef G MatrixGraph;
903 
908 
911 
916 
921 
938  template<class M, class C>
939  std::tuple<int,int,int,int> build(const M& m, G& graph,
940  AggregatesMap<Vertex>& aggregates, const C& c,
941  bool finestLevel);
942  private:
948 
953 
957  typedef std::set<Vertex,std::less<Vertex>,Allocator> VertexSet;
958 
962  typedef std::size_t* SphereMap;
963 
967  MatrixGraph* graph_;
968 
973 
977  std::vector<Vertex> front_;
978 
982  VertexSet connected_;
983 
987  int size_;
988 
992  class Stack
993  {
994  public:
995  static const Vertex NullEntry;
996 
997  Stack(const MatrixGraph& graph,
998  const Aggregator<G>& aggregatesBuilder,
999  const AggregatesMap<Vertex>& aggregates);
1000  ~Stack();
1001  Vertex pop();
1002  private:
1003  enum { N = 1300000 };
1004 
1006  const MatrixGraph& graph_;
1008  const Aggregator<G>& aggregatesBuilder_;
1010  const AggregatesMap<Vertex>& aggregates_;
1012  int size_;
1013  Vertex maxSize_;
1015  typename MatrixGraph::ConstVertexIterator begin_;
1016  typename MatrixGraph::ConstVertexIterator end_;
1017 
1019  Vertex* vals_;
1020 
1021  };
1022 
1023  friend class Stack;
1024 
1035  template<class V>
1036  void visitAggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate,
1037  const AggregatesMap<Vertex>& aggregates,
1038  V& visitor) const;
1039 
1044  template<class V>
1045  class AggregateVisitor
1046  {
1047  public:
1051  typedef V Visitor;
1059  AggregateVisitor(const AggregatesMap<Vertex>& aggregates, const AggregateDescriptor& aggregate,
1060  Visitor& visitor);
1061 
1068  void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
1069 
1070  private:
1072  const AggregatesMap<Vertex>& aggregates_;
1074  AggregateDescriptor aggregate_;
1076  Visitor* visitor_;
1077  };
1078 
1082  class Counter
1083  {
1084  public:
1088  int value();
1089 
1090  protected:
1092  void increment();
1094  void decrement();
1095 
1096  private:
1097  int count_;
1098  };
1099 
1100 
1105  class FrontNeighbourCounter : public Counter
1106  {
1107  public:
1113 
1114  void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
1115 
1116  private:
1117  const MatrixGraph& graph_;
1118  };
1119 
1124  int noFrontNeighbours(const Vertex& vertex) const;
1125 
1129  class TwoWayCounter : public Counter
1130  {
1131  public:
1132  void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
1133  };
1134 
1146  int twoWayConnections(const Vertex&, const AggregateDescriptor& aggregate,
1147  const AggregatesMap<Vertex>& aggregates) const;
1148 
1152  class OneWayCounter : public Counter
1153  {
1154  public:
1155  void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
1156  };
1157 
1169  int oneWayConnections(const Vertex&, const AggregateDescriptor& aggregate,
1170  const AggregatesMap<Vertex>& aggregates) const;
1171 
1178  class ConnectivityCounter : public Counter
1179  {
1180  public:
1187  ConnectivityCounter(const VertexSet& connected, const AggregatesMap<Vertex>& aggregates);
1188 
1189  void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
1190 
1191  private:
1193  const VertexSet& connected_;
1195  const AggregatesMap<Vertex>& aggregates_;
1196 
1197  };
1198 
1210  double connectivity(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;
1218  bool connected(const Vertex& vertex, const AggregateDescriptor& aggregate,
1219  const AggregatesMap<Vertex>& aggregates) const;
1220 
1228  bool connected(const Vertex& vertex, const SLList<AggregateDescriptor>& aggregateList,
1229  const AggregatesMap<Vertex>& aggregates) const;
1230 
1238  class DependencyCounter : public Counter
1239  {
1240  public:
1245 
1246  void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
1247  };
1248 
1255  class FrontMarker
1256  {
1257  public:
1264  FrontMarker(std::vector<Vertex>& front, MatrixGraph& graph);
1265 
1266  void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
1267 
1268  private:
1270  std::vector<Vertex>& front_;
1272  MatrixGraph& graph_;
1273  };
1274 
1278  void unmarkFront();
1279 
1294  int unusedNeighbours(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;
1295 
1309  std::pair<int,int> neighbours(const Vertex& vertex,
1310  const AggregateDescriptor& aggregate,
1311  const AggregatesMap<Vertex>& aggregates) const;
1328  int aggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const;
1329 
1337  bool admissible(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const;
1338 
1346  std::size_t distance(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates);
1347 
1356  Vertex mergeNeighbour(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;
1357 
1366  void nonisoNeighbourAggregate(const Vertex& vertex,
1367  const AggregatesMap<Vertex>& aggregates,
1368  SLList<Vertex>& neighbours) const;
1369 
1377  template<class C>
1378  void growAggregate(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates, const C& c);
1379  template<class C>
1380  void growIsolatedAggregate(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates, const C& c);
1381  };
1382 
1383 #ifndef DOXYGEN
1384 
1385  template<class M, class N>
1386  inline void SymmetricDependency<M,N>::init(const Matrix* matrix)
1387  {
1388  matrix_ = matrix;
1389  }
1390 
1391  template<class M, class N>
1392  inline void SymmetricDependency<M,N>::initRow(const Row& row, int index)
1393  {
1394  DUNE_UNUSED_PARAMETER(row);
1395  maxValue_ = std::min(- std::numeric_limits<typename Matrix::field_type>::max(), std::numeric_limits<typename Matrix::field_type>::min());
1396  row_ = index;
1397  diagonal_ = norm_(matrix_->operator[](row_)[row_]);
1398  }
1399 
1400  template<class M, class N>
1401  inline void SymmetricDependency<M,N>::examine(const ColIter& col)
1402  {
1403  real_type eij = norm_(*col);
1404  typename Matrix::ConstColIterator opposite_entry =
1405  matrix_->operator[](col.index()).find(row_);
1406  if ( opposite_entry == matrix_->operator[](col.index()).end() )
1407  {
1408  // Consider this a weak connection we disregard.
1409  return;
1410  }
1411  real_type eji = norm_(*opposite_entry);
1412 
1413  // skip positive offdiagonals if norm preserves sign of them.
1414  if(!N::is_sign_preserving || eij<0 || eji<0)
1415  maxValue_ = std::max(maxValue_,
1416  eij /diagonal_ * eji/
1417  norm_(matrix_->operator[](col.index())[col.index()]));
1418  }
1419 
1420  template<class M, class N>
1421  template<class G>
1422  inline void SymmetricDependency<M,N>::examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col)
1423  {
1424  real_type eij = norm_(*col);
1425  typename Matrix::ConstColIterator opposite_entry =
1426  matrix_->operator[](col.index()).find(row_);
1427 
1428  if ( opposite_entry == matrix_->operator[](col.index()).end() )
1429  {
1430  // Consider this as a weak connection we disregard.
1431  return;
1432  }
1433  real_type eji = norm_(*opposite_entry);
1434  // skip positve offdiagonals if norm preserves sign of them.
1435  if(!N::is_sign_preserving || (eij<0 || eji<0))
1436  if(eji / norm_(matrix_->operator[](edge.target())[edge.target()]) *
1437  eij/ diagonal_ > alpha() * maxValue_) {
1438  edge.properties().setDepends();
1439  edge.properties().setInfluences();
1440  typename G::EdgeProperties& other = graph.getEdgeProperties(edge.target(), edge.source());
1441  other.setInfluences();
1442  other.setDepends();
1443  }
1444  }
1445 
1446  template<class M, class N>
1447  inline bool SymmetricDependency<M,N>::isIsolated()
1448  {
1449  return maxValue_ < beta();
1450  }
1451 
1452 
1453  template<class M, class N>
1454  inline void Dependency<M,N>::init(const Matrix* matrix)
1455  {
1456  matrix_ = matrix;
1457  }
1458 
1459  template<class M, class N>
1460  inline void Dependency<M,N>::initRow(const Row& row, int index)
1461  {
1462  DUNE_UNUSED_PARAMETER(row);
1463  maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min());
1464  row_ = index;
1465  diagonal_ = norm_(matrix_->operator[](row_)[row_]);
1466  }
1467 
1468  template<class M, class N>
1469  inline void Dependency<M,N>::examine(const ColIter& col)
1470  {
1471  maxValue_ = std::max(maxValue_,
1472  -norm_(*col));
1473  }
1474 
1475  template<class M, class N>
1476  template<class G>
1477  inline void Dependency<M,N>::examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col)
1478  {
1479  if(-norm_(*col) >= maxValue_ * alpha()) {
1480  edge.properties().setDepends();
1481  typedef typename G::EdgeDescriptor ED;
1482  ED e= graph.findEdge(edge.target(), edge.source());
1483  if(e!=std::numeric_limits<ED>::max())
1484  {
1485  typename G::EdgeProperties& other = graph.getEdgeProperties(e);
1486  other.setInfluences();
1487  }
1488  }
1489  }
1490 
1491  template<class M, class N>
1492  inline bool Dependency<M,N>::isIsolated()
1493  {
1494  return maxValue_ < beta() * diagonal_;
1495  }
1496 
1497  template<class G,class S>
1498  Aggregate<G,S>::Aggregate(MatrixGraph& graph, AggregatesMap<Vertex>& aggregates,
1499  VertexSet& connected, std::vector<Vertex>& front)
1500  : vertices_(), id_(-1), graph_(graph), aggregates_(aggregates),
1501  connected_(connected), front_(front)
1502  {}
1503 
1504  template<class G,class S>
1506  {
1507  /*
1508  vertices_.push_back(vertex);
1509  typedef typename VertexList::const_iterator iterator;
1510  iterator begin = vertices_.begin();
1511  iterator end = vertices_.end();*/
1512  throw "Not yet implemented";
1513 
1514  // while(begin!=end){
1515  //for();
1516  // }
1517 
1518  }
1519 
1520  template<class G,class S>
1521  inline void Aggregate<G,S>::seed(const Vertex& vertex)
1522  {
1523  dvverb<<"Connected cleared"<<std::endl;
1524  connected_.clear();
1525  vertices_.clear();
1526  connected_.insert(vertex);
1527  dvverb << " Inserting "<<vertex<<" size="<<connected_.size();
1528  ++id_ ;
1529  add(vertex);
1530  }
1531 
1532 
1533  template<class G,class S>
1534  inline void Aggregate<G,S>::add(const Vertex& vertex)
1535  {
1536  vertices_.insert(vertex);
1537  aggregates_[vertex]=id_;
1538  if(front_.size())
1539  front_.erase(std::lower_bound(front_.begin(), front_.end(), vertex));
1540 
1541 
1542  typedef typename MatrixGraph::ConstEdgeIterator iterator;
1543  const iterator end = graph_.endEdges(vertex);
1544  for(iterator edge = graph_.beginEdges(vertex); edge != end; ++edge) {
1545  dvverb << " Inserting "<<aggregates_[edge.target()];
1546  connected_.insert(aggregates_[edge.target()]);
1547  dvverb <<" size="<<connected_.size();
1548  if(aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED &&
1549  !graph_.getVertexProperties(edge.target()).front())
1550  {
1551  front_.push_back(edge.target());
1552  graph_.getVertexProperties(edge.target()).setFront();
1553  }
1554  }
1555  dvverb <<std::endl;
1556  std::sort(front_.begin(), front_.end());
1557  }
1558 
1559  template<class G,class S>
1560  inline void Aggregate<G,S>::add(std::vector<Vertex>& vertices)
1561  {
1562 #ifndef NDEBUG
1563  std::size_t oldsize = vertices_.size();
1564 #endif
1565  typedef typename std::vector<Vertex>::iterator Iterator;
1566 
1567  typedef typename VertexSet::iterator SIterator;
1568 
1569  SIterator pos=vertices_.begin();
1570  std::vector<Vertex> newFront;
1571  newFront.reserve(front_.capacity());
1572 
1573  std::set_difference(front_.begin(), front_.end(), vertices.begin(), vertices.end(),
1574  std::back_inserter(newFront));
1575  front_=newFront;
1576 
1577  for(Iterator vertex=vertices.begin(); vertex != vertices.end(); ++vertex)
1578  {
1579  pos=vertices_.insert(pos,*vertex);
1580  vertices_.insert(*vertex);
1581  graph_.getVertexProperties(*vertex).resetFront(); // Not a front node any more.
1582  aggregates_[*vertex]=id_;
1583 
1584  typedef typename MatrixGraph::ConstEdgeIterator iterator;
1585  const iterator end = graph_.endEdges(*vertex);
1586  for(iterator edge = graph_.beginEdges(*vertex); edge != end; ++edge) {
1587  dvverb << " Inserting "<<aggregates_[edge.target()];
1588  connected_.insert(aggregates_[edge.target()]);
1589  if(aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED &&
1590  !graph_.getVertexProperties(edge.target()).front())
1591  {
1592  front_.push_back(edge.target());
1593  graph_.getVertexProperties(edge.target()).setFront();
1594  }
1595  dvverb <<" size="<<connected_.size();
1596  }
1597  dvverb <<std::endl;
1598  }
1599  std::sort(front_.begin(), front_.end());
1600  assert(oldsize+vertices.size()==vertices_.size());
1601  }
1602  template<class G,class S>
1603  inline void Aggregate<G,S>::clear()
1604  {
1605  vertices_.clear();
1606  connected_.clear();
1607  id_=-1;
1608  }
1609 
1610  template<class G,class S>
1611  inline typename Aggregate<G,S>::VertexSet::size_type
1613  {
1614  return vertices_.size();
1615  }
1616 
1617  template<class G,class S>
1618  inline typename Aggregate<G,S>::VertexSet::size_type
1620  {
1621  return connected_.size();
1622  }
1623 
1624  template<class G,class S>
1625  inline int Aggregate<G,S>::id()
1626  {
1627  return id_;
1628  }
1629 
1630  template<class G,class S>
1632  {
1633  return vertices_.begin();
1634  }
1635 
1636  template<class G,class S>
1637  inline typename Aggregate<G,S>::const_iterator Aggregate<G,S>::end() const
1638  {
1639  return vertices_.end();
1640  }
1641 
1642  template<class V>
1643  const V AggregatesMap<V>::UNAGGREGATED = std::numeric_limits<V>::max();
1644 
1645  template<class V>
1646  const V AggregatesMap<V>::ISOLATED = std::numeric_limits<V>::max()-1;
1647 
1648  template<class V>
1650  : aggregates_(0)
1651  {}
1652 
1653  template<class V>
1655  {
1656  if(aggregates_!=0)
1657  delete[] aggregates_;
1658  }
1659 
1660 
1661  template<class V>
1662  inline AggregatesMap<V>::AggregatesMap(std::size_t noVertices)
1663  {
1664  allocate(noVertices);
1665  }
1666 
1667  template<class V>
1668  inline std::size_t AggregatesMap<V>::noVertices() const
1669  {
1670  return noVertices_;
1671  }
1672 
1673  template<class V>
1674  inline void AggregatesMap<V>::allocate(std::size_t noVertices)
1675  {
1676  aggregates_ = new AggregateDescriptor[noVertices];
1677  noVertices_ = noVertices;
1678 
1679  for(std::size_t i=0; i < noVertices; i++)
1680  aggregates_[i]=UNAGGREGATED;
1681  }
1682 
1683  template<class V>
1684  inline void AggregatesMap<V>::free()
1685  {
1686  assert(aggregates_ != 0);
1687  delete[] aggregates_;
1688  aggregates_=0;
1689  }
1690 
1691  template<class V>
1692  inline typename AggregatesMap<V>::AggregateDescriptor&
1693  AggregatesMap<V>::operator[](const VertexDescriptor& v)
1694  {
1695  return aggregates_[v];
1696  }
1697 
1698  template<class V>
1699  inline const typename AggregatesMap<V>::AggregateDescriptor&
1700  AggregatesMap<V>::operator[](const VertexDescriptor& v) const
1701  {
1702  return aggregates_[v];
1703  }
1704 
1705  template<class V>
1706  template<bool reset, class G, class F,class VM>
1707  inline std::size_t AggregatesMap<V>::breadthFirstSearch(const V& start,
1708  const AggregateDescriptor& aggregate,
1709  const G& graph, F& aggregateVisitor,
1710  VM& visitedMap) const
1711  {
1712  VertexList vlist;
1713 
1714  DummyEdgeVisitor dummy;
1715  return breadthFirstSearch<true,reset>(start, aggregate, graph, vlist, aggregateVisitor, dummy, visitedMap);
1716  }
1717 
1718  template<class V>
1719  template<bool remove, bool reset, class G, class L, class F1, class F2, class VM>
1720  std::size_t AggregatesMap<V>::breadthFirstSearch(const V& start,
1721  const AggregateDescriptor& aggregate,
1722  const G& graph,
1723  L& visited,
1724  F1& aggregateVisitor,
1725  F2& nonAggregateVisitor,
1726  VM& visitedMap) const
1727  {
1728  typedef typename L::const_iterator ListIterator;
1729  int visitedSpheres = 0;
1730 
1731  visited.push_back(start);
1732  put(visitedMap, start, true);
1733 
1734  ListIterator current = visited.begin();
1735  ListIterator end = visited.end();
1736  std::size_t i=0, size=visited.size();
1737 
1738  // visit the neighbours of all vertices of the
1739  // current sphere.
1740  while(current != end) {
1741 
1742  for(; i<size; ++current, ++i) {
1743  typedef typename G::ConstEdgeIterator EdgeIterator;
1744  const EdgeIterator endEdge = graph.endEdges(*current);
1745 
1746  for(EdgeIterator edge = graph.beginEdges(*current);
1747  edge != endEdge; ++edge) {
1748 
1749  if(aggregates_[edge.target()]==aggregate) {
1750  if(!get(visitedMap, edge.target())) {
1751  put(visitedMap, edge.target(), true);
1752  visited.push_back(edge.target());
1753  aggregateVisitor(edge);
1754  }
1755  }else
1756  nonAggregateVisitor(edge);
1757  }
1758  }
1759  end = visited.end();
1760  size = visited.size();
1761  if(current != end)
1762  visitedSpheres++;
1763  }
1764 
1765  if(reset)
1766  for(current = visited.begin(); current != end; ++current)
1767  put(visitedMap, *current, false);
1768 
1769 
1770  if(remove)
1771  visited.clear();
1772 
1773  return visitedSpheres;
1774  }
1775 
1776  template<class G>
1778  : graph_(0), aggregate_(0), front_(), connected_(), size_(-1)
1779  {}
1780 
1781  template<class G>
1783  {
1784  size_=-1;
1785  }
1786 
1787  template<class G, class C>
1788  void buildDependency(G& graph,
1789  const typename C::Matrix& matrix,
1790  C criterion, bool firstlevel)
1791  {
1792  // assert(graph.isBuilt());
1793  typedef typename C::Matrix Matrix;
1794  typedef typename G::VertexIterator VertexIterator;
1795 
1796  criterion.init(&matrix);
1797 
1798  for(VertexIterator vertex = graph.begin(); vertex != graph.end(); ++vertex) {
1799  typedef typename Matrix::row_type Row;
1800 
1801  const Row& row = matrix[*vertex];
1802 
1803  // Tell the criterion what row we will examine now
1804  // This might for example be used for calculating the
1805  // maximum offdiagonal value
1806  criterion.initRow(row, *vertex);
1807 
1808  // On a first path all columns are examined. After this
1809  // the calculator should know whether the vertex is isolated.
1810  typedef typename Matrix::ConstColIterator ColIterator;
1811  ColIterator end = row.end();
1812  typename FieldTraits<typename Matrix::field_type>::real_type absoffdiag=0.;
1813 
1814  if(firstlevel) {
1815  for(ColIterator col = row.begin(); col != end; ++col)
1816  if(col.index()!=*vertex) {
1817  criterion.examine(col);
1818  absoffdiag=std::max(absoffdiag, col->frobenius_norm());
1819  }
1820 
1821  if(absoffdiag==0)
1822  vertex.properties().setExcludedBorder();
1823  }
1824  else
1825  for(ColIterator col = row.begin(); col != end; ++col)
1826  if(col.index()!=*vertex)
1827  criterion.examine(col);
1828 
1829  // reset the vertex properties
1830  //vertex.properties().reset();
1831 
1832  // Check whether the vertex is isolated.
1833  if(criterion.isIsolated()) {
1834  //std::cout<<"ISOLATED: "<<*vertex<<std::endl;
1835  vertex.properties().setIsolated();
1836  }else{
1837  // Examine all the edges beginning at this vertex.
1838  typedef typename G::EdgeIterator EdgeIterator;
1839  typedef typename Matrix::ConstColIterator ColIterator;
1840  EdgeIterator eEnd = vertex.end();
1841  ColIterator col = matrix[*vertex].begin();
1842 
1843  for(EdgeIterator edge = vertex.begin(); edge!= eEnd; ++edge, ++col) {
1844  // Move to the right column.
1845  while(col.index()!=edge.target())
1846  ++col;
1847  criterion.examine(graph, edge, col);
1848  }
1849  }
1850 
1851  }
1852  }
1853 
1854 
1855  template<class G>
1856  template<class V>
1857  inline Aggregator<G>::AggregateVisitor<V>::AggregateVisitor(const AggregatesMap<Vertex>& aggregates,
1858  const AggregateDescriptor& aggregate, V& visitor)
1859  : aggregates_(aggregates), aggregate_(aggregate), visitor_(&visitor)
1860  {}
1861 
1862  template<class G>
1863  template<class V>
1864  inline void Aggregator<G>::AggregateVisitor<V>::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
1865  {
1866  if(aggregates_[edge.target()]==aggregate_)
1867  visitor_->operator()(edge);
1868  }
1869 
1870  template<class G>
1871  template<class V>
1872  inline void Aggregator<G>::visitAggregateNeighbours(const Vertex& vertex,
1873  const AggregateDescriptor& aggregate,
1874  const AggregatesMap<Vertex>& aggregates,
1875  V& visitor) const
1876  {
1877  // Only evaluates for edge pointing to the aggregate
1878  AggregateVisitor<V> v(aggregates, aggregate, visitor);
1879  visitNeighbours(*graph_, vertex, v);
1880  }
1881 
1882 
1883  template<class G>
1884  inline Aggregator<G>::Counter::Counter()
1885  : count_(0)
1886  {}
1887 
1888  template<class G>
1889  inline void Aggregator<G>::Counter::increment()
1890  {
1891  ++count_;
1892  }
1893 
1894  template<class G>
1895  inline void Aggregator<G>::Counter::decrement()
1896  {
1897  --count_;
1898  }
1899  template<class G>
1900  inline int Aggregator<G>::Counter::value()
1901  {
1902  return count_;
1903  }
1904 
1905  template<class G>
1906  inline void Aggregator<G>::TwoWayCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
1907  {
1908  if(edge.properties().isTwoWay())
1909  Counter::increment();
1910  }
1911 
1912  template<class G>
1913  int Aggregator<G>::twoWayConnections(const Vertex& vertex, const AggregateDescriptor& aggregate,
1914  const AggregatesMap<Vertex>& aggregates) const
1915  {
1916  TwoWayCounter counter;
1917  visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
1918  return counter.value();
1919  }
1920 
1921  template<class G>
1922  int Aggregator<G>::oneWayConnections(const Vertex& vertex, const AggregateDescriptor& aggregate,
1923  const AggregatesMap<Vertex>& aggregates) const
1924  {
1925  OneWayCounter counter;
1926  visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
1927  return counter.value();
1928  }
1929 
1930  template<class G>
1931  inline void Aggregator<G>::OneWayCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
1932  {
1933  if(edge.properties().isOneWay())
1934  Counter::increment();
1935  }
1936 
1937  template<class G>
1938  inline Aggregator<G>::ConnectivityCounter::ConnectivityCounter(const VertexSet& connected,
1939  const AggregatesMap<Vertex>& aggregates)
1940  : Counter(), connected_(connected), aggregates_(aggregates)
1941  {}
1942 
1943 
1944  template<class G>
1945  inline void Aggregator<G>::ConnectivityCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
1946  {
1947  if(connected_.find(aggregates_[edge.target()]) == connected_.end() || aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED)
1948  // Would be a new connection
1949  Counter::increment();
1950  else{
1951  Counter::increment();
1952  Counter::increment();
1953  }
1954  }
1955 
1956  template<class G>
1957  inline double Aggregator<G>::connectivity(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
1958  {
1959  ConnectivityCounter counter(connected_, aggregates);
1960  double noNeighbours=visitNeighbours(*graph_, vertex, counter);
1961  return (double)counter.value()/noNeighbours;
1962  }
1963 
1964  template<class G>
1965  inline Aggregator<G>::DependencyCounter::DependencyCounter()
1966  : Counter()
1967  {}
1968 
1969  template<class G>
1970  inline void Aggregator<G>::DependencyCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
1971  {
1972  if(edge.properties().depends())
1973  Counter::increment();
1974  if(edge.properties().influences())
1975  Counter::increment();
1976  }
1977 
1978  template<class G>
1979  int Aggregator<G>::unusedNeighbours(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
1980  {
1981  return aggregateNeighbours(vertex, AggregatesMap<Vertex>::UNAGGREGATED, aggregates);
1982  }
1983 
1984  template<class G>
1985  std::pair<int,int> Aggregator<G>::neighbours(const Vertex& vertex,
1986  const AggregateDescriptor& aggregate,
1987  const AggregatesMap<Vertex>& aggregates) const
1988  {
1989  DependencyCounter unused, aggregated;
1990  typedef AggregateVisitor<DependencyCounter> Counter;
1991  typedef std::tuple<Counter,Counter> CounterTuple;
1992  CombinedFunctor<CounterTuple> visitors(CounterTuple(Counter(aggregates, AggregatesMap<Vertex>::UNAGGREGATED, unused), Counter(aggregates, aggregate, aggregated)));
1993  visitNeighbours(*graph_, vertex, visitors);
1994  return std::make_pair(unused.value(), aggregated.value());
1995  }
1996 
1997 
1998  template<class G>
1999  int Aggregator<G>::aggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const
2000  {
2001  DependencyCounter counter;
2002  visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
2003  return counter.value();
2004  }
2005 
2006  template<class G>
2007  std::size_t Aggregator<G>::distance(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates)
2008  {
2009  return 0;
2010  typename PropertyMapTypeSelector<VertexVisitedTag,G>::Type visitedMap = get(VertexVisitedTag(), *graph_);
2011  VertexList vlist;
2012  typename AggregatesMap<Vertex>::DummyEdgeVisitor dummy;
2013  return aggregates.template breadthFirstSearch<true,true>(vertex,
2014  aggregate_->id(), *graph_,
2015  vlist, dummy, dummy, visitedMap);
2016  }
2017 
2018  template<class G>
2019  inline Aggregator<G>::FrontMarker::FrontMarker(std::vector<Vertex>& front, MatrixGraph& graph)
2020  : front_(front), graph_(graph)
2021  {}
2022 
2023  template<class G>
2024  inline void Aggregator<G>::FrontMarker::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
2025  {
2026  Vertex target = edge.target();
2027 
2028  if(!graph_.getVertexProperties(target).front()) {
2029  front_.push_back(target);
2030  graph_.getVertexProperties(target).setFront();
2031  }
2032  }
2033 
2034  template<class G>
2035  inline bool Aggregator<G>::admissible(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const
2036  {
2037  // Todo
2038  Dune::dvverb<<" Admissible not yet implemented!"<<std::endl;
2039  return true;
2040  //Situation 1: front node depends on two nodes. Then these
2041  // have to be strongly connected to each other
2042 
2043  // Iterate over all all neighbours of front node
2044  typedef typename MatrixGraph::ConstEdgeIterator Iterator;
2045  Iterator vend = graph_->endEdges(vertex);
2046  for(Iterator edge = graph_->beginEdges(vertex); edge != vend; ++edge) {
2047  // if(edge.properties().depends() && !edge.properties().influences()
2048  if(edge.properties().isStrong()
2049  && aggregates[edge.target()]==aggregate)
2050  {
2051  // Search for another link to the aggregate
2052  Iterator edge1 = edge;
2053  for(++edge1; edge1 != vend; ++edge1) {
2054  //if(edge1.properties().depends() && !edge1.properties().influences()
2055  if(edge1.properties().isStrong()
2056  && aggregates[edge.target()]==aggregate)
2057  {
2058  //Search for an edge connecting the two vertices that is
2059  //strong
2060  bool found=false;
2061  Iterator v2end = graph_->endEdges(edge.target());
2062  for(Iterator edge2 = graph_->beginEdges(edge.target()); edge2 != v2end; ++edge2) {
2063  if(edge2.target()==edge1.target() &&
2064  edge2.properties().isStrong()) {
2065  found =true;
2066  break;
2067  }
2068  }
2069  if(found)
2070  {
2071  return true;
2072  }
2073  }
2074  }
2075  }
2076  }
2077 
2078  // Situation 2: cluster node depends on front node and other cluster node
2080  vend = graph_->endEdges(vertex);
2081  for(Iterator edge = graph_->beginEdges(vertex); edge != vend; ++edge) {
2082  //if(!edge.properties().depends() && edge.properties().influences()
2083  if(edge.properties().isStrong()
2084  && aggregates[edge.target()]==aggregate)
2085  {
2086  // Search for a link from target that stays within the aggregate
2087  Iterator v1end = graph_->endEdges(edge.target());
2088 
2089  for(Iterator edge1=graph_->beginEdges(edge.target()); edge1 != v1end; ++edge1) {
2090  //if(edge1.properties().depends() && !edge1.properties().influences()
2091  if(edge1.properties().isStrong()
2092  && aggregates[edge1.target()]==aggregate)
2093  {
2094  bool found=false;
2095  // Check if front node is also connected to this one
2096  Iterator v2end = graph_->endEdges(vertex);
2097  for(Iterator edge2 = graph_->beginEdges(vertex); edge2 != v2end; ++edge2) {
2098  if(edge2.target()==edge1.target()) {
2099  if(edge2.properties().isStrong())
2100  found=true;
2101  break;
2102  }
2103  }
2104  if(found)
2105  {
2106  return true;
2107  }
2108  }
2109  }
2110  }
2111  }
2112  return false;
2113  }
2114 
2115  template<class G>
2116  void Aggregator<G>::unmarkFront()
2117  {
2118  typedef typename std::vector<Vertex>::const_iterator Iterator;
2119 
2120  for(Iterator vertex=front_.begin(); vertex != front_.end(); ++vertex)
2121  graph_->getVertexProperties(*vertex).resetFront();
2122 
2123  front_.clear();
2124  }
2125 
2126  template<class G>
2127  inline void
2128  Aggregator<G>::nonisoNeighbourAggregate(const Vertex& vertex,
2129  const AggregatesMap<Vertex>& aggregates,
2130  SLList<Vertex>& neighbours) const
2131  {
2132  typedef typename MatrixGraph::ConstEdgeIterator Iterator;
2133  Iterator end=graph_->beginEdges(vertex);
2134  neighbours.clear();
2135 
2136  for(Iterator edge=graph_->beginEdges(vertex); edge!=end; ++edge)
2137  {
2138  if(aggregates[edge.target()]!=AggregatesMap<Vertex>::UNAGGREGATED && graph_->getVertexProperties(edge.target()).isolated())
2139  neighbours.push_back(aggregates[edge.target()]);
2140  }
2141  }
2142 
2143  template<class G>
2144  inline typename G::VertexDescriptor Aggregator<G>::mergeNeighbour(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
2145  {
2146  typedef typename MatrixGraph::ConstEdgeIterator Iterator;
2147 
2148  Iterator end = graph_->endEdges(vertex);
2149  for(Iterator edge = graph_->beginEdges(vertex); edge != end; ++edge) {
2150  if(aggregates[edge.target()] != AggregatesMap<Vertex>::UNAGGREGATED &&
2151  graph_->getVertexProperties(edge.target()).isolated() == graph_->getVertexProperties(edge.source()).isolated()) {
2152  if( graph_->getVertexProperties(vertex).isolated() ||
2153  ((edge.properties().depends() || edge.properties().influences())
2154  && admissible(vertex, aggregates[edge.target()], aggregates)))
2155  return edge.target();
2156  }
2157  }
2159  }
2160 
2161  template<class G>
2162  Aggregator<G>::FrontNeighbourCounter::FrontNeighbourCounter(const MatrixGraph& graph)
2163  : Counter(), graph_(graph)
2164  {}
2165 
2166  template<class G>
2167  void Aggregator<G>::FrontNeighbourCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
2168  {
2169  if(graph_.getVertexProperties(edge.target()).front())
2170  Counter::increment();
2171  }
2172 
2173  template<class G>
2174  int Aggregator<G>::noFrontNeighbours(const Vertex& vertex) const
2175  {
2176  FrontNeighbourCounter counter(*graph_);
2177  visitNeighbours(*graph_, vertex, counter);
2178  return counter.value();
2179  }
2180  template<class G>
2181  inline bool Aggregator<G>::connected(const Vertex& vertex,
2182  const AggregateDescriptor& aggregate,
2183  const AggregatesMap<Vertex>& aggregates) const
2184  {
2185  typedef typename G::ConstEdgeIterator iterator;
2186  const iterator end = graph_->endEdges(vertex);
2187  for(iterator edge = graph_->beginEdges(vertex); edge != end; ++edge)
2188  if(aggregates[edge.target()]==aggregate)
2189  return true;
2190  return false;
2191  }
2192  template<class G>
2193  inline bool Aggregator<G>::connected(const Vertex& vertex,
2194  const SLList<AggregateDescriptor>& aggregateList,
2195  const AggregatesMap<Vertex>& aggregates) const
2196  {
2197  typedef typename SLList<AggregateDescriptor>::const_iterator Iter;
2198  for(Iter i=aggregateList.begin(); i!=aggregateList.end(); ++i)
2199  if(connected(vertex, *i, aggregates))
2200  return true;
2201  return false;
2202  }
2203 
2204  template<class G>
2205  template<class C>
2206  void Aggregator<G>::growIsolatedAggregate(const Vertex& seed, const AggregatesMap<Vertex>& aggregates, const C& c)
2207  {
2208  SLList<Vertex> connectedAggregates;
2209  nonisoNeighbourAggregate(seed, aggregates,connectedAggregates);
2210 
2211  while(aggregate_->size()< c.minAggregateSize() && aggregate_->connectSize() < c.maxConnectivity()) {
2212  double maxCon=-1;
2213  std::size_t maxFrontNeighbours=0;
2214 
2216 
2217  typedef typename std::vector<Vertex>::const_iterator Iterator;
2218 
2219  for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
2220  if(distance(*vertex, aggregates)>c.maxDistance())
2221  continue; // distance of proposes aggregate too big
2222 
2223  if(connectedAggregates.size()>0) {
2224  // there is already a neighbour cluster
2225  // front node must be connected to same neighbour cluster
2226 
2227  if(!connected(*vertex, connectedAggregates, aggregates))
2228  continue;
2229  }
2230 
2231  double con = connectivity(*vertex, aggregates);
2232 
2233  if(con == maxCon) {
2234  std::size_t frontNeighbours = noFrontNeighbours(*vertex);
2235 
2236  if(frontNeighbours >= maxFrontNeighbours) {
2237  maxFrontNeighbours = frontNeighbours;
2238  candidate = *vertex;
2239  }
2240  }else if(con > maxCon) {
2241  maxCon = con;
2242  maxFrontNeighbours = noFrontNeighbours(*vertex);
2243  candidate = *vertex;
2244  }
2245  }
2246 
2248  break;
2249 
2250  aggregate_->add(candidate);
2251  }
2252  }
2253 
2254  template<class G>
2255  template<class C>
2256  void Aggregator<G>::growAggregate(const Vertex& seed, const AggregatesMap<Vertex>& aggregates, const C& c)
2257  {
2258 
2259  std::size_t distance_ =0;
2260  while(aggregate_->size() < c.minAggregateSize()&& distance_<c.maxDistance()) {
2261  int maxTwoCons=0, maxOneCons=0, maxNeighbours=-1;
2262  double maxCon=-1;
2263 
2264  std::vector<Vertex> candidates;
2265  candidates.reserve(30);
2266 
2267  typedef typename std::vector<Vertex>::const_iterator Iterator;
2268 
2269  for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
2270  // Only nonisolated nodes are considered
2271  if(graph_->getVertexProperties(*vertex).isolated())
2272  continue;
2273 
2274  int twoWayCons = twoWayConnections(*vertex, aggregate_->id(), aggregates);
2275 
2276  /* The case of two way connections. */
2277  if( maxTwoCons == twoWayCons && twoWayCons > 0) {
2278  double con = connectivity(*vertex, aggregates);
2279 
2280  if(con == maxCon) {
2281  int neighbours = noFrontNeighbours(*vertex);
2282 
2283  if(neighbours > maxNeighbours) {
2284  maxNeighbours = neighbours;
2285  candidates.clear();
2286  candidates.push_back(*vertex);
2287  }else{
2288  candidates.push_back(*vertex);
2289  }
2290  }else if( con > maxCon) {
2291  maxCon = con;
2292  maxNeighbours = noFrontNeighbours(*vertex);
2293  candidates.clear();
2294  candidates.push_back(*vertex);
2295  }
2296  }else if(twoWayCons > maxTwoCons) {
2297  maxTwoCons = twoWayCons;
2298  maxCon = connectivity(*vertex, aggregates);
2299  maxNeighbours = noFrontNeighbours(*vertex);
2300  candidates.clear();
2301  candidates.push_back(*vertex);
2302 
2303  // two way connections precede
2304  maxOneCons = std::numeric_limits<int>::max();
2305  }
2306 
2307  if(twoWayCons > 0)
2308  {
2309  continue; // THis is a two-way node, skip tests for one way nodes
2310  }
2311 
2312  /* The one way case */
2313  int oneWayCons = oneWayConnections(*vertex, aggregate_->id(), aggregates);
2314 
2315  if(oneWayCons==0)
2316  continue; // No strong connections, skip the tests.
2317 
2318  if(!admissible(*vertex, aggregate_->id(), aggregates))
2319  continue;
2320 
2321  if( maxOneCons == oneWayCons && oneWayCons > 0) {
2322  double con = connectivity(*vertex, aggregates);
2323 
2324  if(con == maxCon) {
2325  int neighbours = noFrontNeighbours(*vertex);
2326 
2327  if(neighbours > maxNeighbours) {
2328  maxNeighbours = neighbours;
2329  candidates.clear();
2330  candidates.push_back(*vertex);
2331  }else{
2332  if(neighbours==maxNeighbours)
2333  {
2334  candidates.push_back(*vertex);
2335  }
2336  }
2337  }else if( con > maxCon) {
2338  maxCon = con;
2339  maxNeighbours = noFrontNeighbours(*vertex);
2340  candidates.clear();
2341  candidates.push_back(*vertex);
2342  }
2343  }else if(oneWayCons > maxOneCons) {
2344  maxOneCons = oneWayCons;
2345  maxCon = connectivity(*vertex, aggregates);
2346  maxNeighbours = noFrontNeighbours(*vertex);
2347  candidates.clear();
2348  candidates.push_back(*vertex);
2349  }
2350  }
2351 
2352 
2353  if(!candidates.size())
2354  break; // No more candidates found
2355  distance_=distance(seed, aggregates);
2356  candidates.resize(std::min(candidates.size(), c.maxAggregateSize()-
2357  aggregate_->size()));
2358  aggregate_->add(candidates);
2359  }
2360  }
2361 
2362  template<typename V>
2363  template<typename M, typename G, typename C>
2364  std::tuple<int,int,int,int> AggregatesMap<V>::buildAggregates(const M& matrix, G& graph, const C& criterion,
2365  bool finestLevel)
2366  {
2367  Aggregator<G> aggregator;
2368  return aggregator.build(matrix, graph, *this, criterion, finestLevel);
2369  }
2370 
2371  template<class G>
2372  template<class M, class C>
2373  std::tuple<int,int,int,int> Aggregator<G>::build(const M& m, G& graph, AggregatesMap<Vertex>& aggregates, const C& c,
2374  bool finestLevel)
2375  {
2376  // Stack for fast vertex access
2377  Stack stack_(graph, *this, aggregates);
2378 
2379  graph_ = &graph;
2380 
2381  aggregate_ = new Aggregate<G,VertexSet>(graph, aggregates, connected_, front_);
2382 
2383  Timer watch;
2384  watch.reset();
2385 
2386  buildDependency(graph, m, c, finestLevel);
2387 
2388  dverb<<"Build dependency took "<< watch.elapsed()<<" seconds."<<std::endl;
2389  int noAggregates, conAggregates, isoAggregates, oneAggregates;
2390  std::size_t maxA=0, minA=1000000, avg=0;
2391  int skippedAggregates;
2392  noAggregates = conAggregates = isoAggregates = oneAggregates =
2393  skippedAggregates = 0;
2394 
2395  while(true) {
2396  Vertex seed = stack_.pop();
2397 
2398  if(seed == Stack::NullEntry)
2399  // No more unaggregated vertices. We are finished!
2400  break;
2401 
2402  // Debugging output
2403  if((noAggregates+1)%10000 == 0)
2404  Dune::dverb<<"c";
2405  unmarkFront();
2406 
2407  if(graph.getVertexProperties(seed).excludedBorder()) {
2408  aggregates[seed]=AggregatesMap<Vertex>::ISOLATED;
2409  ++skippedAggregates;
2410  continue;
2411  }
2412 
2413  if(graph.getVertexProperties(seed).isolated()) {
2414  if(c.skipIsolated()) {
2415  // isolated vertices are not aggregated but skipped on the coarser levels.
2416  aggregates[seed]=AggregatesMap<Vertex>::ISOLATED;
2417  ++skippedAggregates;
2418  // skip rest as no agglomeration is done.
2419  continue;
2420  }else{
2421  aggregate_->seed(seed);
2422  growIsolatedAggregate(seed, aggregates, c);
2423  }
2424  }else{
2425  aggregate_->seed(seed);
2426  growAggregate(seed, aggregates, c);
2427  }
2428 
2429  /* The rounding step. */
2430  while(!(graph.getVertexProperties(seed).isolated()) && aggregate_->size() < c.maxAggregateSize()) {
2431 
2432  std::vector<Vertex> candidates;
2433  candidates.reserve(30);
2434 
2435  typedef typename std::vector<Vertex>::const_iterator Iterator;
2436 
2437  for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
2438 
2439  if(graph.getVertexProperties(*vertex).isolated())
2440  continue; // No isolated nodes here
2441 
2442  if(twoWayConnections( *vertex, aggregate_->id(), aggregates) == 0 &&
2443  (oneWayConnections( *vertex, aggregate_->id(), aggregates) == 0 ||
2444  !admissible( *vertex, aggregate_->id(), aggregates) ))
2445  continue;
2446 
2447  std::pair<int,int> neighbourPair=neighbours(*vertex, aggregate_->id(),
2448  aggregates);
2449 
2450  //if(aggregateNeighbours(*vertex, aggregate_->id(), aggregates) <= unusedNeighbours(*vertex, aggregates))
2451  // continue;
2452 
2453  if(neighbourPair.first >= neighbourPair.second)
2454  continue;
2455 
2456  if(distance(*vertex, aggregates) > c.maxDistance())
2457  continue; // Distance too far
2458  candidates.push_back(*vertex);
2459  break;
2460  }
2461 
2462  if(!candidates.size()) break; // no more candidates found.
2463 
2464  candidates.resize(std::min(candidates.size(), c.maxAggregateSize()-
2465  aggregate_->size()));
2466  aggregate_->add(candidates);
2467 
2468  }
2469 
2470  // try to merge aggregates consisting of only one nonisolated vertex with other aggregates
2471  if(aggregate_->size()==1 && c.maxAggregateSize()>1) {
2472  if(!graph.getVertexProperties(seed).isolated()) {
2473  Vertex mergedNeighbour = mergeNeighbour(seed, aggregates);
2474 
2475  if(mergedNeighbour != AggregatesMap<Vertex>::UNAGGREGATED) {
2476  // assign vertex to the neighbouring cluster
2477  aggregates[seed] = aggregates[mergedNeighbour];
2478  aggregate_->invalidate();
2479  }else{
2480  ++avg;
2481  minA=std::min(minA,static_cast<std::size_t>(1));
2482  maxA=std::max(maxA,static_cast<std::size_t>(1));
2483  ++oneAggregates;
2484  ++conAggregates;
2485  }
2486  }else{
2487  ++avg;
2488  minA=std::min(minA,static_cast<std::size_t>(1));
2489  maxA=std::max(maxA,static_cast<std::size_t>(1));
2490  ++oneAggregates;
2491  ++isoAggregates;
2492  }
2493  ++avg;
2494  }else{
2495  avg+=aggregate_->size();
2496  minA=std::min(minA,aggregate_->size());
2497  maxA=std::max(maxA,aggregate_->size());
2498  if(graph.getVertexProperties(seed).isolated())
2499  ++isoAggregates;
2500  else
2501  ++conAggregates;
2502  }
2503 
2504  }
2505 
2506  Dune::dinfo<<"connected aggregates: "<<conAggregates;
2507  Dune::dinfo<<" isolated aggregates: "<<isoAggregates;
2508  if(conAggregates+isoAggregates>0)
2509  Dune::dinfo<<" one node aggregates: "<<oneAggregates<<" min size="
2510  <<minA<<" max size="<<maxA
2511  <<" avg="<<avg/(conAggregates+isoAggregates)<<std::endl;
2512 
2513  delete aggregate_;
2514  return std::make_tuple(conAggregates+isoAggregates,isoAggregates,
2515  oneAggregates,skippedAggregates);
2516  }
2517 
2518 
2519  template<class G>
2520  Aggregator<G>::Stack::Stack(const MatrixGraph& graph, const Aggregator<G>& aggregatesBuilder,
2521  const AggregatesMap<Vertex>& aggregates)
2522  : graph_(graph), aggregatesBuilder_(aggregatesBuilder), aggregates_(aggregates), begin_(graph.begin()), end_(graph.end())
2523  {
2524  //vals_ = new Vertex[N];
2525  }
2526 
2527  template<class G>
2528  Aggregator<G>::Stack::~Stack()
2529  {
2530  //Dune::dverb << "Max stack size was "<<maxSize_<<" filled="<<filled_<<std::endl;
2531  //delete[] vals_;
2532  }
2533 
2534  template<class G>
2535  const typename Aggregator<G>::Vertex Aggregator<G>::Stack::NullEntry
2536  = std::numeric_limits<typename G::VertexDescriptor>::max();
2537 
2538  template<class G>
2539  inline typename G::VertexDescriptor Aggregator<G>::Stack::pop()
2540  {
2541  for(; begin_!=end_ && aggregates_[*begin_] != AggregatesMap<Vertex>::UNAGGREGATED; ++begin_) ;
2542 
2543  if(begin_!=end_)
2544  {
2545  typename G::VertexDescriptor current=*begin_;
2546  ++begin_;
2547  return current;
2548  }else
2549  return NullEntry;
2550  }
2551 
2552 #endif // DOXYGEN
2553 
2554  template<class V>
2555  void printAggregates2d(const AggregatesMap<V>& aggregates, int n, int m, std::ostream& os)
2556  {
2557  std::ios_base::fmtflags oldOpts=os.flags();
2558 
2559  os.setf(std::ios_base::right, std::ios_base::adjustfield);
2560 
2561  V max=0;
2562  int width=1;
2563 
2564  for(int i=0; i< n*m; i++)
2565  max=std::max(max, aggregates[i]);
2566 
2567  for(int i=10; i < 1000000; i*=10)
2568  if(max/i>0)
2569  width++;
2570  else
2571  break;
2572 
2573  for(int j=0, entry=0; j < m; j++) {
2574  for(int i=0; i<n; i++, entry++) {
2575  os.width(width);
2576  os<<aggregates[entry]<<" ";
2577  }
2578 
2579  os<<std::endl;
2580  }
2581  os<<std::endl;
2582  os.flags(oldOpts);
2583  }
2584 
2585 
2586  } // namespace Amg
2587 
2588 } // namespace Dune
2589 
2590 
2591 #endif
A class for temporarily storing the vertices of an aggregate in.
Definition: aggregates.hh:765
A Dummy visitor that does nothing for each visited edge.
Definition: aggregates.hh:581
Class providing information about the mapping of the vertices onto aggregates.
Definition: aggregates.hh:543
Base class of all aggregation criterions.
Definition: aggregates.hh:47
Class for building the aggregates.
Definition: aggregates.hh:896
Dependency policy for symmetric matrices.
Definition: aggregates.hh:249
Norm that uses only the [N][N] entry of the block to determine couplings.
Definition: aggregates.hh:372
Norm that uses only the [0][0] entry of the block to determine couplings.
Definition: aggregates.hh:432
Iterator over all edges starting from a vertex.
Definition: graph.hh:93
The vertex iterator type of the graph.
Definition: graph.hh:207
The (undirected) graph of a matrix.
Definition: graph.hh:49
M::size_type VertexDescriptor
The vertex descriptor.
Definition: graph.hh:71
EdgeIteratorT< const MatrixGraph< Matrix > > ConstEdgeIterator
The constant edge iterator type.
Definition: graph.hh:296
All parameters for AMG.
Definition: parameters.hh:391
Criterion taking advantage of symmetric matrices.
Definition: aggregates.hh:499
Dependency policy for symmetric matrices.
Definition: aggregates.hh:310
Dependency policy for symmetric matrices.
Definition: aggregates.hh:132
Criterion suited for unsymmetric matrices.
Definition: aggregates.hh:522
derive error class from the base class in common
Definition: istlexception.hh:16
A generic dynamic dense matrix.
Definition: matrix.hh:555
T::field_type field_type
Export the type representing the underlying field.
Definition: matrix.hh:559
row_type::const_iterator ConstColIterator
Const iterator for the entries of each row.
Definition: matrix.hh:583
MatrixImp::DenseMatrixBase< T, A >::window_type row_type
The type implementing a matrix row.
Definition: matrix.hh:568
An allocator managing a pool of objects for reuse.
Definition: poolallocator.hh:247
A single linked list.
Definition: sllist.hh:42
Type traits to determine the type of reals (when working with complex numbers)
Provides classes for building the matrix graph.
SLListConstIterator< T, A > const_iterator
The constant iterator of the list.
Definition: sllist.hh:72
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentionally unused function parameters with.
Definition: unused.hh:25
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
constexpr GeometryType vertex
GeometryType representing a vertex.
Definition: type.hh:727
Matrix::ConstColIterator ColIter
Constant column iterator of the matrix.
Definition: aggregates.hh:269
Matrix::ConstColIterator ColIter
Constant column iterator of the matrix.
Definition: aggregates.hh:152
std::size_t breadthFirstSearch(const VertexDescriptor &start, const AggregateDescriptor &aggregate, const G &graph, L &visited, F1 &aggregateVisitor, F2 &nonAggregateVisitor, VM &visitedMap) const
Breadth first search within an aggregate.
PoolAllocator< VertexDescriptor, 100 > Allocator
The allocator we use for our lists and the set.
Definition: aggregates.hh:569
int id()
Get the id identifying the aggregate.
Norm norm_
The functor for calculating the norm.
Definition: aggregates.hh:298
MatrixGraph::VertexDescriptor Vertex
The vertex identifier.
Definition: aggregates.hh:907
AggregationCriterion()
Constructor.
Definition: aggregates.hh:64
const Matrix * matrix_
The matrix we work on.
Definition: aggregates.hh:353
M Matrix
The matrix type we build the dependency of.
Definition: aggregates.hh:254
G MatrixGraph
The matrix graph type used.
Definition: aggregates.hh:902
FieldTraits< typename M::field_type >::real_type operator()(const M &m) const
compute the norm of a matrix.
Definition: aggregates.hh:467
const AggregateDescriptor & operator[](const VertexDescriptor &v) const
Get the aggregate a vertex belongs to.
Norm norm_
The functor for calculating the norm.
Definition: aggregates.hh:359
M Matrix
The matrix type we build the dependency of.
Definition: aggregates.hh:315
real_type diagonal_
The norm of the current diagonal.
Definition: aggregates.hh:185
N Norm
The norm to use for examining the matrix entries.
Definition: aggregates.hh:259
std::tuple< int, int, int, int > build(const M &m, G &graph, AggregatesMap< Vertex > &aggregates, const C &c, bool finestLevel)
Build the aggregates.
int row_
index of the currently evaluated row.
Definition: aggregates.hh:183
FrontNeighbourCounter(const MatrixGraph &front)
Constructor.
Matrix::row_type Row
Constant Row iterator of the matrix.
Definition: aggregates.hh:325
const Matrix * matrix_
The matrix we work on.
Definition: aggregates.hh:292
AggregateVisitor(const AggregatesMap< Vertex > &aggregates, const AggregateDescriptor &aggregate, Visitor &visitor)
Constructor.
Matrix::ConstColIterator ColIter
Constant column iterator of the matrix.
Definition: aggregates.hh:330
~AggregatesMap()
Destructor.
Matrix::field_type field_type
The current max value.
Definition: aggregates.hh:177
void decrement()
Decrement counter.
Aggregate(MatrixGraph &graph, AggregatesMap< Vertex > &aggregates, VertexSet &connectivity, std::vector< Vertex > &front_)
Constructor.
V Visitor
The type of the adapted visitor.
Definition: aggregates.hh:1051
std::size_t * SphereMap
Type of the mapping of aggregate members onto distance spheres.
Definition: aggregates.hh:796
Matrix::row_type Row
Constant Row iterator of the matrix.
Definition: aggregates.hh:264
VertexSet::size_type connectSize()
Get tne number of connections to other aggregates.
FieldTraits< typename M::field_type >::real_type operator()(const M &m) const
compute the norm of a matrix.
Definition: aggregates.hh:483
N Norm
The norm to use for examining the matrix entries.
Definition: aggregates.hh:320
Norm norm_
The functor for calculating the norm.
Definition: aggregates.hh:181
FieldTraits< typename M::field_type >::real_type operator()(const M &m) const
compute the norm of a matrix.
Definition: aggregates.hh:383
VertexSet::const_iterator const_iterator
Const iterator over a vertex list.
Definition: aggregates.hh:791
MatrixGraph::VertexDescriptor AggregateDescriptor
The type of the aggregate descriptor.
Definition: aggregates.hh:910
real_type diagonal_
The norm of the current diagonal.
Definition: aggregates.hh:363
~Aggregator()
Destructor.
AggregateDescriptor & operator[](const VertexDescriptor &v)
Get the aggregate a vertex belongs to.
void add(const Vertex &vertex)
Add a vertex to the aggregate.
T DependencyPolicy
The policy for calculating the dependency graph.
Definition: aggregates.hh:53
Aggregator()
Constructor.
void operator()(const typename MatrixGraph::ConstEdgeIterator &edge)
Examine an edge.
FrontMarker(std::vector< Vertex > &front, MatrixGraph &graph)
Constructor.
int visitNeighbours(const G &graph, const typename G::VertexDescriptor &vertex, V &visitor)
Visit all neighbour vertices of a vertex in a graph.
void setDefaultValuesIsotropic(std::size_t dim, std::size_t diameter=2)
Sets reasonable default values for an isotropic problem.
Definition: aggregates.hh:80
V AggregateDescriptor
The aggregate descriptor type.
Definition: aggregates.hh:563
static const V ISOLATED
Identifier of isolated vertices.
Definition: aggregates.hh:554
int row_
index of the currently evaluated row.
Definition: aggregates.hh:361
real_type diagonal_
The norm of the current diagonal.
Definition: aggregates.hh:302
std::size_t noVertices() const
Get the number of vertices.
void setDefaultValuesAnisotropic(std::size_t dim, std::size_t diameter=2)
Sets reasonable default values for an aisotropic problem.
Definition: aggregates.hh:103
AggregatesMap(std::size_t noVertices)
Constructs with allocating memory.
Matrix::field_type field_type
The current max value.
Definition: aggregates.hh:355
AggregatesMap()
Constructs without allocating memory.
int value()
Access the current count.
std::tuple< int, int, int, int > buildAggregates(const M &matrix, G &graph, const C &criterion, bool finestLevel)
Build the aggregates.
SLList< VertexDescriptor, Allocator > VertexList
The type of a single linked list of vertex descriptors.
Definition: aggregates.hh:575
ConnectivityCounter(const VertexSet &connected, const AggregatesMap< Vertex > &aggregates)
Constructor.
VertexSet::size_type size()
Get the size of the aggregate.
const_iterator end() const
get an iterator over the vertices of the aggregate.
FieldTraits< typename M::field_type >::real_type operator()(const M &m) const
compute the norm of a matrix.
Definition: aggregates.hh:450
int row_
index of the currently evaluated row.
Definition: aggregates.hh:300
M Matrix
The matrix type we build the dependency of.
Definition: aggregates.hh:137
const Matrix * matrix_
The matrix we work on.
Definition: aggregates.hh:175
S VertexSet
The type of a single linked list of vertex descriptors.
Definition: aggregates.hh:788
static const V UNAGGREGATED
Identifier of not yet aggregated vertices.
Definition: aggregates.hh:549
std::size_t breadthFirstSearch(const VertexDescriptor &start, const AggregateDescriptor &aggregate, const G &graph, F &aggregateVisitor, VM &visitedMap) const
Breadth first search within an aggregate.
Matrix::field_type field_type
The current max value.
Definition: aggregates.hh:294
void allocate(std::size_t noVertices)
Allocate memory for holding the information.
N Norm
The norm to use for examining the matrix entries.
Definition: aggregates.hh:142
void reconstruct(const Vertex &vertex)
Reconstruct the aggregat from an seed node.
const_iterator begin() const
get an iterator over the vertices of the aggregate.
MatrixGraph::VertexDescriptor Vertex
The vertex descriptor type.
Definition: aggregates.hh:776
void seed(const Vertex &vertex)
Initialize the aggregate with one vertex.
void clear()
Clear the aggregate.
void free()
Free the allocated memory.
void increment()
Increment counter.
void buildDependency(G &graph, const typename C::Matrix &matrix, C criterion, bool finestLevel)
Build the dependency of the matrix graph.
V VertexDescriptor
The vertex descriptor type.
Definition: aggregates.hh:558
Matrix::row_type Row
Constant Row iterator of the matrix.
Definition: aggregates.hh:147
PoolAllocator< Vertex, 100 > Allocator
The allocator we use for our lists and the set.
Definition: aggregates.hh:782
DVVerbType dvverb(std::cout)
stream for very verbose output.
Definition: stdstreams.hh:93
DInfoType dinfo(std::cout)
Stream for informative output.
Definition: stdstreams.hh:138
DVerbType dverb(std::cout)
Singleton of verbose debug stream.
Definition: stdstreams.hh:114
constexpr Front front
PartitionSet for the front partition.
Definition: partitionset.hh:279
Dune namespace.
Definition: alignedallocator.hh:10
Parameter classes for customizing AMG.
An stl-compliant pool allocator.
Provides classes for handling internal properties in a graph.
Implements a singly linked list together with the necessary iterators.
Standard Dune debug streams.
Functor using the row sum (infinity) norm to determine strong couplings.
Definition: aggregates.hh:440
A simple timing class.
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 16, 22:29, 2024)