Dune Core Modules (2.6.0)

affinegeometry.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH
4 #define DUNE_GEOMETRY_AFFINEGEOMETRY_HH
5 
11 #include <cmath>
12 
13 #include <dune/common/fmatrix.hh>
14 #include <dune/common/fvector.hh>
15 
16 #include <dune/geometry/type.hh>
17 
18 namespace Dune
19 {
20 
21  // External Forward Declarations
22  // -----------------------------
23 
24  namespace Geo
25  {
26 
27  template< typename Implementation >
28  class ReferenceElement;
29 
30  template< class ctype, int dim >
31  class ReferenceElementImplementation;
32 
33  template< class ctype, int dim >
34  struct ReferenceElements;
35 
36  }
37 
38 
39  namespace Impl
40  {
41 
42  // FieldMatrixHelper
43  // -----------------
44 
45  template< class ct >
46  struct FieldMatrixHelper
47  {
48  typedef ct ctype;
49 
50  template< int m, int n >
51  static void Ax ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &ret )
52  {
53  for( int i = 0; i < m; ++i )
54  {
55  ret[ i ] = ctype( 0 );
56  for( int j = 0; j < n; ++j )
57  ret[ i ] += A[ i ][ j ] * x[ j ];
58  }
59  }
60 
61  template< int m, int n >
62  static void ATx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &ret )
63  {
64  for( int i = 0; i < n; ++i )
65  {
66  ret[ i ] = ctype( 0 );
67  for( int j = 0; j < m; ++j )
68  ret[ i ] += A[ j ][ i ] * x[ j ];
69  }
70  }
71 
72  template< int m, int n, int p >
73  static void AB ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, n, p > &B, FieldMatrix< ctype, m, p > &ret )
74  {
75  for( int i = 0; i < m; ++i )
76  {
77  for( int j = 0; j < p; ++j )
78  {
79  ret[ i ][ j ] = ctype( 0 );
80  for( int k = 0; k < n; ++k )
81  ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
82  }
83  }
84  }
85 
86  template< int m, int n, int p >
87  static void ATBT ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, p, m > &B, FieldMatrix< ctype, n, p > &ret )
88  {
89  for( int i = 0; i < n; ++i )
90  {
91  for( int j = 0; j < p; ++j )
92  {
93  ret[ i ][ j ] = ctype( 0 );
94  for( int k = 0; k < m; ++k )
95  ret[ i ][ j ] += A[ k ][ i ] * B[ j ][ k ];
96  }
97  }
98  }
99 
100  template< int m, int n >
101  static void ATA_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
102  {
103  for( int i = 0; i < n; ++i )
104  {
105  for( int j = 0; j <= i; ++j )
106  {
107  ret[ i ][ j ] = ctype( 0 );
108  for( int k = 0; k < m; ++k )
109  ret[ i ][ j ] += A[ k ][ i ] * A[ k ][ j ];
110  }
111  }
112  }
113 
114  template< int m, int n >
115  static void ATA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
116  {
117  for( int i = 0; i < n; ++i )
118  {
119  for( int j = 0; j <= i; ++j )
120  {
121  ret[ i ][ j ] = ctype( 0 );
122  for( int k = 0; k < m; ++k )
123  ret[ i ][ j ] += A[ k ][ i ] * A[ k ][ j ];
124  ret[ j ][ i ] = ret[ i ][ j ];
125  }
126 
127  ret[ i ][ i ] = ctype( 0 );
128  for( int k = 0; k < m; ++k )
129  ret[ i ][ i ] += A[ k ][ i ] * A[ k ][ i ];
130  }
131  }
132 
133  template< int m, int n >
134  static void AAT_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
135  {
136  /*
137  if (m==2) {
138  ret[0][0] = A[0]*A[0];
139  ret[1][1] = A[1]*A[1];
140  ret[1][0] = A[0]*A[1];
141  }
142  else
143  */
144  for( int i = 0; i < m; ++i )
145  {
146  for( int j = 0; j <= i; ++j )
147  {
148  ctype &retij = ret[ i ][ j ];
149  retij = A[ i ][ 0 ] * A[ j ][ 0 ];
150  for( int k = 1; k < n; ++k )
151  retij += A[ i ][ k ] * A[ j ][ k ];
152  }
153  }
154  }
155 
156  template< int m, int n >
157  static void AAT ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
158  {
159  for( int i = 0; i < m; ++i )
160  {
161  for( int j = 0; j < i; ++j )
162  {
163  ret[ i ][ j ] = ctype( 0 );
164  for( int k = 0; k < n; ++k )
165  ret[ i ][ j ] += A[ i ][ k ] * A[ j ][ k ];
166  ret[ j ][ i ] = ret[ i ][ j ];
167  }
168  ret[ i ][ i ] = ctype( 0 );
169  for( int k = 0; k < n; ++k )
170  ret[ i ][ i ] += A[ i ][ k ] * A[ i ][ k ];
171  }
172  }
173 
174  template< int n >
175  static void Lx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
176  {
177  for( int i = 0; i < n; ++i )
178  {
179  ret[ i ] = ctype( 0 );
180  for( int j = 0; j <= i; ++j )
181  ret[ i ] += L[ i ][ j ] * x[ j ];
182  }
183  }
184 
185  template< int n >
186  static void LTx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
187  {
188  for( int i = 0; i < n; ++i )
189  {
190  ret[ i ] = ctype( 0 );
191  for( int j = i; j < n; ++j )
192  ret[ i ] += L[ j ][ i ] * x[ j ];
193  }
194  }
195 
196  template< int n >
197  static void LTL ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
198  {
199  for( int i = 0; i < n; ++i )
200  {
201  for( int j = 0; j < i; ++j )
202  {
203  ret[ i ][ j ] = ctype( 0 );
204  for( int k = i; k < n; ++k )
205  ret[ i ][ j ] += L[ k ][ i ] * L[ k ][ j ];
206  ret[ j ][ i ] = ret[ i ][ j ];
207  }
208  ret[ i ][ i ] = ctype( 0 );
209  for( int k = i; k < n; ++k )
210  ret[ i ][ i ] += L[ k ][ i ] * L[ k ][ i ];
211  }
212  }
213 
214  template< int n >
215  static void LLT ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
216  {
217  for( int i = 0; i < n; ++i )
218  {
219  for( int j = 0; j < i; ++j )
220  {
221  ret[ i ][ j ] = ctype( 0 );
222  for( int k = 0; k <= j; ++k )
223  ret[ i ][ j ] += L[ i ][ k ] * L[ j ][ k ];
224  ret[ j ][ i ] = ret[ i ][ j ];
225  }
226  ret[ i ][ i ] = ctype( 0 );
227  for( int k = 0; k <= i; ++k )
228  ret[ i ][ i ] += L[ i ][ k ] * L[ i ][ k ];
229  }
230  }
231 
232  template< int n >
233  static void cholesky_L ( const FieldMatrix< ctype, n, n > &A, FieldMatrix< ctype, n, n > &ret )
234  {
235  for( int i = 0; i < n; ++i )
236  {
237  ctype &rii = ret[ i ][ i ];
238 
239  ctype xDiag = A[ i ][ i ];
240  for( int j = 0; j < i; ++j )
241  xDiag -= ret[ i ][ j ] * ret[ i ][ j ];
242  assert( xDiag > ctype( 0 ) );
243  rii = sqrt( xDiag );
244 
245  ctype invrii = ctype( 1 ) / rii;
246  for( int k = i+1; k < n; ++k )
247  {
248  ctype x = A[ k ][ i ];
249  for( int j = 0; j < i; ++j )
250  x -= ret[ i ][ j ] * ret[ k ][ j ];
251  ret[ k ][ i ] = invrii * x;
252  }
253  }
254  }
255 
256  template< int n >
257  static ctype detL ( const FieldMatrix< ctype, n, n > &L )
258  {
259  ctype det( 1 );
260  for( int i = 0; i < n; ++i )
261  det *= L[ i ][ i ];
262  return det;
263  }
264 
265  template< int n >
266  static ctype invL ( FieldMatrix< ctype, n, n > &L )
267  {
268  ctype det( 1 );
269  for( int i = 0; i < n; ++i )
270  {
271  ctype &lii = L[ i ][ i ];
272  det *= lii;
273  lii = ctype( 1 ) / lii;
274  for( int j = 0; j < i; ++j )
275  {
276  ctype &lij = L[ i ][ j ];
277  ctype x = lij * L[ j ][ j ];
278  for( int k = j+1; k < i; ++k )
279  x += L[ i ][ k ] * L[ k ][ j ];
280  lij = (-lii) * x;
281  }
282  }
283  return det;
284  }
285 
286  // calculates x := L^{-1} x
287  template< int n >
288  static void invLx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
289  {
290  for( int i = 0; i < n; ++i )
291  {
292  for( int j = 0; j < i; ++j )
293  x[ i ] -= L[ i ][ j ] * x[ j ];
294  x[ i ] /= L[ i ][ i ];
295  }
296  }
297 
298  // calculates x := L^{-T} x
299  template< int n >
300  static void invLTx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
301  {
302  for( int i = n; i > 0; --i )
303  {
304  for( int j = i; j < n; ++j )
305  x[ i-1 ] -= L[ j ][ i-1 ] * x[ j ];
306  x[ i-1 ] /= L[ i-1 ][ i-1 ];
307  }
308  }
309 
310  template< int n >
311  static ctype spdDetA ( const FieldMatrix< ctype, n, n > &A )
312  {
313  // return A[0][0]*A[1][1]-A[1][0]*A[1][0];
314  FieldMatrix< ctype, n, n > L;
315  cholesky_L( A, L );
316  return detL( L );
317  }
318 
319  template< int n >
320  static ctype spdInvA ( FieldMatrix< ctype, n, n > &A )
321  {
322  FieldMatrix< ctype, n, n > L;
323  cholesky_L( A, L );
324  const ctype det = invL( L );
325  LTL( L, A );
326  return det;
327  }
328 
329  // calculate x := A^{-1} x
330  template< int n >
331  static void spdInvAx ( FieldMatrix< ctype, n, n > &A, FieldVector< ctype, n > &x )
332  {
333  FieldMatrix< ctype, n, n > L;
334  cholesky_L( A, L );
335  invLx( L, x );
336  invLTx( L, x );
337  }
338 
339  template< int m, int n >
340  static ctype detATA ( const FieldMatrix< ctype, m, n > &A )
341  {
342  if( m >= n )
343  {
344  FieldMatrix< ctype, n, n > ata;
345  ATA_L( A, ata );
346  return spdDetA( ata );
347  }
348  else
349  return ctype( 0 );
350  }
351 
357  template< int m, int n >
358  static ctype sqrtDetAAT ( const FieldMatrix< ctype, m, n > &A )
359  {
360  using std::abs;
361  using std::sqrt;
362  // These special cases are here not only for speed reasons:
363  // The general implementation aborts if the matrix is almost singular,
364  // and the special implementation provide a stable way to handle that case.
365  if( (n == 2) && (m == 2) )
366  {
367  // Special implementation for 2x2 matrices: faster and more stable
368  return abs( A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ] );
369  }
370  else if( (n == 3) && (m == 3) )
371  {
372  // Special implementation for 3x3 matrices
373  const ctype v0 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 1 ][ 1 ] * A[ 0 ][ 2 ];
374  const ctype v1 = A[ 0 ][ 2 ] * A[ 1 ][ 0 ] - A[ 1 ][ 2 ] * A[ 0 ][ 0 ];
375  const ctype v2 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 1 ][ 0 ] * A[ 0 ][ 1 ];
376  return abs( v0 * A[ 2 ][ 0 ] + v1 * A[ 2 ][ 1 ] + v2 * A[ 2 ][ 2 ] );
377  }
378  else if ( (n == 3) && (m == 2) )
379  {
380  // Special implementation for 2x3 matrices
381  const ctype v0 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 0 ][ 1 ] * A[ 1 ][ 0 ];
382  const ctype v1 = A[ 0 ][ 0 ] * A[ 1 ][ 2 ] - A[ 1 ][ 0 ] * A[ 0 ][ 2 ];
383  const ctype v2 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 0 ][ 2 ] * A[ 1 ][ 1 ];
384  return sqrt( v0*v0 + v1*v1 + v2*v2);
385  }
386  else if( n >= m )
387  {
388  // General case
389  FieldMatrix< ctype, m, m > aat;
390  AAT_L( A, aat );
391  return spdDetA( aat );
392  }
393  else
394  return ctype( 0 );
395  }
396 
397  // A^{-1}_L = (A^T A)^{-1} A^T
398  // => A^{-1}_L A = I
399  template< int m, int n >
400  static ctype leftInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
401  {
402  static_assert((m >= n), "Matrix has no left inverse.");
403  FieldMatrix< ctype, n, n > ata;
404  ATA_L( A, ata );
405  const ctype det = spdInvA( ata );
406  ATBT( ata, A, ret );
407  return det;
408  }
409 
410  template< int m, int n >
411  static void leftInvAx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &y )
412  {
413  static_assert((m >= n), "Matrix has no left inverse.");
414  FieldMatrix< ctype, n, n > ata;
415  ATx( A, x, y );
416  ATA_L( A, ata );
417  spdInvAx( ata, y );
418  }
419 
421  template< int m, int n >
422  static ctype rightInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
423  {
424  static_assert((n >= m), "Matrix has no right inverse.");
425  using std::abs;
426  if( (n == 2) && (m == 2) )
427  {
428  const ctype det = (A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ]);
429  const ctype detInv = ctype( 1 ) / det;
430  ret[ 0 ][ 0 ] = A[ 1 ][ 1 ] * detInv;
431  ret[ 1 ][ 1 ] = A[ 0 ][ 0 ] * detInv;
432  ret[ 1 ][ 0 ] = -A[ 1 ][ 0 ] * detInv;
433  ret[ 0 ][ 1 ] = -A[ 0 ][ 1 ] * detInv;
434  return abs( det );
435  }
436  else
437  {
438  FieldMatrix< ctype, m , m > aat;
439  AAT_L( A, aat );
440  const ctype det = spdInvA( aat );
441  ATBT( A , aat , ret );
442  return det;
443  }
444  }
445 
446  template< int m, int n >
447  static void xTRightInvA ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &y )
448  {
449  static_assert((n >= m), "Matrix has no right inverse.");
450  FieldMatrix< ctype, m, m > aat;
451  Ax( A, x, y );
452  AAT_L( A, aat );
453  spdInvAx( aat, y );
454  }
455  };
456 
457  } // namespace Impl
458 
459 
460 
466  template< class ct, int mydim, int cdim>
468  {
469  public:
470 
472  typedef ct ctype;
473 
475  static const int mydimension= mydim;
476 
478  static const int coorddimension = cdim;
479 
482 
485 
488 
491 
492  private:
495 
497 
498  // Helper class to compute a matrix pseudo inverse
499  typedef Impl::FieldMatrixHelper< ct > MatrixHelper;
500 
501  public:
503  AffineGeometry ( const ReferenceElement &refElement, const GlobalCoordinate &origin,
504  const JacobianTransposed &jt )
505  : refElement_(refElement), origin_(origin), jacobianTransposed_(jt)
506  {
507  integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
508  }
509 
512  const JacobianTransposed &jt )
513  : AffineGeometry(ReferenceElements::general( gt ), origin, jt)
514  { }
515 
517  template< class CoordVector >
518  AffineGeometry ( const ReferenceElement &refElement, const CoordVector &coordVector )
519  : refElement_(refElement), origin_(coordVector[0])
520  {
521  for( int i = 0; i < mydimension; ++i )
522  jacobianTransposed_[ i ] = coordVector[ i+1 ] - origin_;
523  integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
524  }
525 
527  template< class CoordVector >
528  AffineGeometry ( Dune::GeometryType gt, const CoordVector &coordVector )
529  : AffineGeometry(ReferenceElements::general( gt ), coordVector)
530  { }
531 
533  bool affine () const { return true; }
534 
536  Dune::GeometryType type () const { return refElement_.type(); }
537 
539  int corners () const { return refElement_.size( mydimension ); }
540 
542  GlobalCoordinate corner ( int i ) const
543  {
544  return global( refElement_.position( i, mydimension ) );
545  }
546 
548  GlobalCoordinate center () const { return global( refElement_.position( 0, 0 ) ); }
549 
556  GlobalCoordinate global ( const LocalCoordinate &local ) const
557  {
558  GlobalCoordinate global( origin_ );
559  jacobianTransposed_.umtv( local, global );
560  return global;
561  }
562 
576  LocalCoordinate local ( const GlobalCoordinate &global ) const
577  {
578  LocalCoordinate local;
579  jacobianInverseTransposed_.mtv( global - origin_, local );
580  return local;
581  }
582 
593  ctype integrationElement ( const LocalCoordinate &local ) const
594  {
595  DUNE_UNUSED_PARAMETER(local);
596  return integrationElement_;
597  }
598 
600  ctype volume () const
601  {
602  return integrationElement_ * refElement_.volume();
603  }
604 
612  {
613  DUNE_UNUSED_PARAMETER(local);
614  return jacobianTransposed_;
615  }
616 
624  {
625  DUNE_UNUSED_PARAMETER(local);
626  return jacobianInverseTransposed_;
627  }
628 
629  friend ReferenceElement referenceElement ( const AffineGeometry &geometry )
630  {
631  return geometry.refElement_;
632  }
633 
634  private:
635  ReferenceElement refElement_;
636  GlobalCoordinate origin_;
637  JacobianTransposed jacobianTransposed_;
638  JacobianInverseTransposed jacobianInverseTransposed_;
639  ctype integrationElement_;
640  };
641 
642 } // namespace Dune
643 
644 #endif // #ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH
Implementation of the Geometry interface for affine geometries.
Definition: affinegeometry.hh:468
AffineGeometry(const ReferenceElement &refElement, const CoordVector &coordVector)
Create affine geometry from reference element and a vector of vertex coordinates.
Definition: affinegeometry.hh:518
AffineGeometry(Dune::GeometryType gt, const GlobalCoordinate &origin, const JacobianTransposed &jt)
Create affine geometry from GeometryType, one vertex, and the Jacobian matrix.
Definition: affinegeometry.hh:511
const JacobianInverseTransposed & jacobianInverseTransposed(const LocalCoordinate &local) const
Obtain the transposed of the Jacobian's inverse.
Definition: affinegeometry.hh:623
FieldVector< ctype, mydimension > LocalCoordinate
Type for local coordinate vector.
Definition: affinegeometry.hh:481
Dune::GeometryType type() const
Obtain the type of the reference element.
Definition: affinegeometry.hh:536
static const int mydimension
Dimension of the geometry.
Definition: affinegeometry.hh:475
AffineGeometry(const ReferenceElement &refElement, const GlobalCoordinate &origin, const JacobianTransposed &jt)
Create affine geometry from reference element, one vertex, and the Jacobian matrix.
Definition: affinegeometry.hh:503
ctype volume() const
Obtain the volume of the element.
Definition: affinegeometry.hh:600
AffineGeometry(Dune::GeometryType gt, const CoordVector &coordVector)
Create affine geometry from GeometryType and a vector of vertex coordinates.
Definition: affinegeometry.hh:528
ctype integrationElement(const LocalCoordinate &local) const
Obtain the integration element.
Definition: affinegeometry.hh:593
FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed
Type for the transposed Jacobian matrix.
Definition: affinegeometry.hh:487
GlobalCoordinate corner(int i) const
Obtain coordinates of the i-th corner.
Definition: affinegeometry.hh:542
int corners() const
Obtain number of corners of the corresponding reference element.
Definition: affinegeometry.hh:539
FieldMatrix< ctype, coorddimension, mydimension > JacobianInverseTransposed
Type for the transposed inverse Jacobian matrix.
Definition: affinegeometry.hh:490
static const int coorddimension
Dimension of the world space.
Definition: affinegeometry.hh:478
GlobalCoordinate global(const LocalCoordinate &local) const
Evaluate the mapping.
Definition: affinegeometry.hh:556
GlobalCoordinate center() const
Obtain the centroid of the mapping's image.
Definition: affinegeometry.hh:548
ct ctype
Type used for coordinates.
Definition: affinegeometry.hh:472
FieldVector< ctype, coorddimension > GlobalCoordinate
Type for coordinate vector in world space.
Definition: affinegeometry.hh:484
bool affine() const
Always true: this is an affine geometry.
Definition: affinegeometry.hh:533
const JacobianTransposed & jacobianTransposed(const LocalCoordinate &local) const
Obtain the transposed of the Jacobian.
Definition: affinegeometry.hh:611
void mtv(const X &x, Y &y) const
y = A^T x
Definition: densematrix.hh:395
void umtv(const X &x, Y &y) const
y += A^T x
Definition: densematrix.hh:423
vector space out of a tensor product of fields.
Definition: fvector.hh:93
This class provides access to geometric and topological properties of a reference element.
Definition: referenceelement.hh:31
CoordinateField volume() const
obtain the volume of the reference element
Definition: referenceelement.hh:219
decltype(auto) type(int i, int c) const
obtain the type of subentity (i,c)
Definition: referenceelement.hh:149
int size(int c) const
number of subentities of codimension c
Definition: referenceelement.hh:95
decltype(auto) position(int i, int c) const
position of the barycenter of entity (i,c)
Definition: referenceelement.hh:181
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:277
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentionally unused function parameters with.
Definition: unused.hh:25
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:147
unspecified-type ReferenceElement
Returns the type of reference element for the argument type T.
Definition: referenceelements.hh:495
Dune namespace.
Definition: alignedallocator.hh:10
Class providing access to the singletons of the reference elements.
Definition: referenceelements.hh:168
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (Apr 27, 22:29, 2024)