Dune Core Modules (2.5.2)

schwarz.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_ISTL_SCHWARZ_HH
4#define DUNE_ISTL_SCHWARZ_HH
5
6#include <iostream> // for input/output to shell
7#include <fstream> // for input/output to files
8#include <vector> // STL vector class
9#include <sstream>
10
11#include <cmath> // Yes, we do some math here
12
13#include <dune/common/timer.hh>
14
15#include "io.hh"
16#include "bvector.hh"
17#include "vbvector.hh"
18#include "bcrsmatrix.hh"
19#include "io.hh"
20#include "gsetc.hh"
21#include "ilu.hh"
22#include "operators.hh"
23#include "solvers.hh"
24#include "preconditioners.hh"
25#include "scalarproducts.hh"
26#include "owneroverlapcopy.hh"
27
28namespace Dune {
29
74 template<class M, class X, class Y, class C>
76 {
77 public:
82 typedef M matrix_type;
87 typedef X domain_type;
92 typedef Y range_type;
94 typedef typename X::field_type field_type;
100
101 enum {
104 };
105
114 : _A_(A), communication(com)
115 {}
116
118 virtual void apply (const X& x, Y& y) const
119 {
120 y = 0;
121 _A_.umv(x,y); // result is consistent on interior+border
122 communication.project(y); // we want this here to avoid it before the preconditioner
123 // since there d is const!
124 }
125
127 virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
128 {
129 _A_.usmv(alpha,x,y); // result is consistent on interior+border
130 communication.project(y); // we want this here to avoid it before the preconditioner
131 // since there d is const!
132 }
133
135 virtual const matrix_type& getmat () const
136 {
137 return _A_;
138 }
139
140 private:
141 const matrix_type& _A_;
142 const communication_type& communication;
143 };
144
162 template<class X, class C>
164 {
165 public:
170 typedef X domain_type;
172 typedef typename X::field_type field_type;
173 typedef typename FieldTraits<field_type>::real_type real_type;
179
181 enum {category=SolverCategory::overlapping};
182
188 : communication(com)
189 {}
190
195 virtual field_type dot (const X& x, const X& y)
196 {
197 field_type result;
198 communication.dot(x,y,result);
199 return result;
200 }
201
205 virtual real_type norm (const X& x)
206 {
207 return communication.norm(x);
208 }
209
210 private:
211 const communication_type& communication;
212 };
213
214 template<class X, class C>
215 struct ScalarProductChooser<X,C,SolverCategory::overlapping>
216 {
218 typedef OverlappingSchwarzScalarProduct<X,C> ScalarProduct;
220 typedef C communication_type;
221
222 enum {
225 };
226
227 static ScalarProduct* construct(const communication_type& comm)
228 {
229 return new ScalarProduct(comm);
230 }
231 };
232
252 template<class M, class X, class Y, class C>
253 class ParSSOR : public Preconditioner<X,Y> {
254 public:
256 typedef M matrix_type;
258 typedef X domain_type;
260 typedef Y range_type;
262 typedef typename X::field_type field_type;
265
266 // define the category
267 enum {
270 };
271
281 ParSSOR (const matrix_type& A, int n, field_type w, const communication_type& c)
282 : _A_(A), _n(n), _w(w), communication(c)
283 { }
284
290 virtual void pre (X& x, Y& b)
291 {
292 communication.copyOwnerToAll(x,x); // make dirichlet values consistent
293 }
294
300 virtual void apply (X& v, const Y& d)
301 {
302 for (int i=0; i<_n; i++) {
303 bsorf(_A_,v,d,_w);
304 bsorb(_A_,v,d,_w);
305 }
306 communication.copyOwnerToAll(v,v);
307 }
308
314 virtual void post (X& x) {}
315
316 private:
318 const matrix_type& _A_;
320 int _n;
322 field_type _w;
324 const communication_type& communication;
325 };
326
327 namespace Amg
328 {
329 template<class T> class ConstructionTraits;
330 }
331
355 template<class X, class Y, class C, class T=Preconditioner<X,Y> >
357 friend class Amg::ConstructionTraits<BlockPreconditioner<X,Y,C,T> >;
358 public:
363 typedef X domain_type;
368 typedef Y range_type;
370 typedef typename X::field_type field_type;
376
377 // define the category
378 enum {
381 };
382
391 : preconditioner(p), communication(c)
392 { }
393
399 virtual void pre (X& x, Y& b)
400 {
401 communication.copyOwnerToAll(x,x); // make dirichlet values consistent
402 preconditioner.pre(x,b);
403 }
404
410 virtual void apply (X& v, const Y& d)
411 {
412 preconditioner.apply(v,d);
413 communication.copyOwnerToAll(v,v);
414 }
415
416 template<bool forward>
417 void apply (X& v, const Y& d)
418 {
419 preconditioner.template apply<forward>(v,d);
420 communication.copyOwnerToAll(v,v);
421 }
422
428 virtual void post (X& x)
429 {
430 preconditioner.post(x);
431 }
432
433 private:
435 T& preconditioner;
436
438 const communication_type& communication;
439 };
440
443} // end namespace
444
445#endif
Implementation of the BCRSMatrix class.
This file implements a vector space as a tensor product of a given vector space. The number of compon...
Traits class for generically constructing non default constructable types.
Definition: construction.hh:38
A linear operator exporting itself in matrix form.
Definition: operators.hh:94
Block parallel preconditioner.
Definition: schwarz.hh:356
X domain_type
The domain type of the preconditioner.
Definition: schwarz.hh:363
Y range_type
The range type of the preconditioner.
Definition: schwarz.hh:368
@ category
The category the precondtioner is part of.
Definition: schwarz.hh:380
BlockPreconditioner(T &p, const communication_type &c)
Constructor.
Definition: schwarz.hh:390
C communication_type
The type of the communication object..
Definition: schwarz.hh:375
virtual void post(X &x)
Clean up.
Definition: schwarz.hh:428
void apply(X &v, const Y &d)
Apply one step of the preconditioner to the system A(v)=d.
Definition: schwarz.hh:417
virtual void pre(X &x, Y &b)
Prepare the preconditioner.
Definition: schwarz.hh:399
X::field_type field_type
The field type of the preconditioner.
Definition: schwarz.hh:370
virtual void apply(X &v, const Y &d)
Apply the preconditioner.
Definition: schwarz.hh:410
X::field_type field_type
The field type of the operator.
Definition: operators.hh:69
An overlapping schwarz operator.
Definition: schwarz.hh:76
virtual const matrix_type & getmat() const
get the sequential assembled linear operator.
Definition: schwarz.hh:135
virtual void applyscaleadd(field_type alpha, const X &x, Y &y) const
apply operator to x, scale and add:
Definition: schwarz.hh:127
virtual void apply(const X &x, Y &y) const
apply operator to x:
Definition: schwarz.hh:118
C communication_type
The type of the communication object.
Definition: schwarz.hh:99
X domain_type
The type of the domain.
Definition: schwarz.hh:87
M matrix_type
The type of the matrix we operate on.
Definition: schwarz.hh:82
@ category
The solver category.
Definition: schwarz.hh:103
Y range_type
The type of the range.
Definition: schwarz.hh:92
X::field_type field_type
The field type of the range.
Definition: schwarz.hh:94
OverlappingSchwarzOperator(const matrix_type &A, const communication_type &com)
constructor: just store a reference to a matrix.
Definition: schwarz.hh:113
Scalar product for overlapping schwarz methods.
Definition: schwarz.hh:164
C communication_type
The type of the communication object.
Definition: schwarz.hh:178
virtual real_type norm(const X &x)
Norm of a right-hand side vector. The vector must be consistent on the interior+border partition.
Definition: schwarz.hh:205
virtual field_type dot(const X &x, const X &y)
Dot product of two vectors. It is assumed that the vectors are consistent on the interior+border part...
Definition: schwarz.hh:195
X domain_type
The type of the vector to compute the scalar product on.
Definition: schwarz.hh:170
X::field_type field_type
The field type used by the vector type domain_type.
Definition: schwarz.hh:172
OverlappingSchwarzScalarProduct(const communication_type &com)
Constructor needs to know the grid.
Definition: schwarz.hh:187
A parallel SSOR preconditioner.
Definition: schwarz.hh:253
X::field_type field_type
The field type of the preconditioner.
Definition: schwarz.hh:262
C communication_type
The type of the communication object.
Definition: schwarz.hh:264
@ category
The category the precondtioner is part of.
Definition: schwarz.hh:269
ParSSOR(const matrix_type &A, int n, field_type w, const communication_type &c)
Constructor.
Definition: schwarz.hh:281
virtual void post(X &x)
Clean up.
Definition: schwarz.hh:314
X domain_type
The domain type of the preconditioner.
Definition: schwarz.hh:258
Y range_type
The range type of the preconditioner.
Definition: schwarz.hh:260
M matrix_type
The matrix type the preconditioner is for.
Definition: schwarz.hh:256
virtual void apply(X &v, const Y &d)
Apply the precondtioner.
Definition: schwarz.hh:300
virtual void pre(X &x, Y &b)
Prepare the preconditioner.
Definition: schwarz.hh:290
Base class for matrix free definition of preconditioners.
Definition: preconditioner.hh:26
X::field_type field_type
The field type of the preconditioner.
Definition: preconditioner.hh:33
Base class for scalar product and norm computation.
Definition: scalarproducts.hh:44
void bsorb(const M &A, X &x, const Y &b, const K &w)
SSOR step.
Definition: gsetc.hh:591
void bsorf(const M &A, X &x, const Y &b, const K &w)
SOR step.
Definition: gsetc.hh:579
Simple iterative methods like Jacobi, Gauss-Seidel, SOR, SSOR, etc. in a generic way.
Some generic functions for pretty printing vectors and matrices.
Dune namespace.
Definition: alignment.hh:11
Define general, extensible interface for operators. The available implementation wraps a matrix.
Classes providing communication interfaces for overlapping Schwarz methods.
Define general preconditioner interface.
Define base class for scalar product and norm.
Implementations of the inverse operator interface.
C communication_type
The type of the communication object.
Definition: scalarproducts.hh:79
@ solverCategory
The solver category.
Definition: scalarproducts.hh:83
@ overlapping
Category for overlapping solvers.
Definition: solvercategory.hh:25
A simple timing class.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 13, 23:29, 2024)