Dune Core Modules (2.5.0)

hybridutilities.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_COMMON_HYBRIDUTILITIES_HH
4#define DUNE_COMMON_HYBRIDUTILITIES_HH
5
6#include <tuple>
7#include <utility>
8
11#include <dune/common/indices.hh>
12
13
14
15namespace Dune {
16namespace Hybrid {
17
18namespace Impl {
19
20 // Try if tuple_size is implemented for class
21 template<class T, int i>
22 constexpr auto size(const Dune::FieldVector<T, i>*, const PriorityTag<5>&)
23 -> decltype(std::integral_constant<std::size_t,i>())
24 {
25 return {};
26 }
27
28 // Try if we have an instance of std::integer_sequence
29 template<class T, T... t, class Index>
30 constexpr auto size(std::integer_sequence<T, t...>, PriorityTag<4>)
31 {
32 using sizeAsType = std::tuple_size<decltype(std::make_tuple(t...))>;
33 return std::integral_constant<std::size_t, sizeAsType::value>();
34 }
35
36 // Try if tuple_size is implemented for class
37 template<class T>
38 constexpr auto size(const T*, const PriorityTag<3>&)
39 -> decltype(std::integral_constant<std::size_t,std::tuple_size<T>::value>())
40 {
41 return {};
42 }
43
44 // Try if there's a static constexpr size()
45 template<class T>
46 constexpr auto size(const T*, const PriorityTag<1>&)
47 -> decltype(std::integral_constant<std::size_t,T::size()>())
48 {
49 return {};
50 }
51
52 // As a last resort try if there's a static constexpr size()
53 template<class T>
54 constexpr auto size(const T* t, const PriorityTag<0>&)
55 {
56 return t->size();
57 }
58
59} // namespace Impl
60
61
62
84template<class T>
85constexpr auto size(const T& t)
86{
87 return Impl::size(&t, PriorityTag<42>());
88}
89
90
91
92namespace Impl {
93
94 template<class Container, class Index,
95 std::enable_if_t<IsTuple<std::decay_t<Container>>::value, int> = 0>
96 constexpr decltype(auto) elementAt(Container&& c, Index&&, PriorityTag<2>)
97 {
98 return std::get<std::decay_t<Index>::value>(c);
99 }
100
101 template<class T, T... t, class Index>
102 constexpr decltype(auto) elementAt(std::integer_sequence<T, t...> c, Index&&, PriorityTag<1>)
103 {
104 return std::get<std::decay_t<Index>::value>(std::make_tuple(std::integral_constant<T, t>()...));
105 }
106
107 template<class Container, class Index>
108 constexpr decltype(auto) elementAt(Container&& c, Index&& i, PriorityTag<0>)
109 {
110 return c[i];
111 }
112
113} // namespace Impl
114
115
116
137template<class Container, class Index>
138constexpr decltype(auto) elementAt(Container&& c, Index&& i)
139{
140 return Impl::elementAt(std::forward<Container>(c), std::forward<Index>(i), PriorityTag<42>());
141}
142
143
144
145namespace Impl {
146
147 template<class Begin, class End>
148 class StaticIntegralRange
149 {
150 public:
151
152 template<std::size_t i>
153 constexpr auto operator[](Dune::index_constant<i>) const
154 {
155 return std::integral_constant<typename Begin::value_type, Begin::value+i>();
156 }
157
158 static constexpr auto size()
159 {
160 return std::integral_constant<typename Begin::value_type, End::value - Begin::value>();
161 }
162 };
163
164 template<class T>
165 class DynamicIntegralRange
166 {
167 public:
168 constexpr DynamicIntegralRange(const T& begin, const T& end):
169 begin_(begin),
170 end_(end)
171 {}
172
173 constexpr auto size() const
174 {
175 return end_ - begin_;
176 }
177
178 constexpr T operator[](const T&i) const
179 { return begin_+i; }
180
181 private:
182 T begin_;
183 T end_;
184 };
185
186 template<class Begin, class End,
187 std::enable_if_t<IsIntegralConstant<Begin>::value and IsIntegralConstant<End>::value, int> = 0>
188 constexpr auto integralRange(const Begin& begin, const End& end, const PriorityTag<1>&)
189 {
190 static_assert(Begin::value <= End::value, "You cannot create an integralRange where end<begin");
191 return Impl::StaticIntegralRange<Begin,End>();
192 }
193
194 // This should be constexpr but gcc-4.9 does not support
195 // the relaxed constexpr requirements. Hence for beeing
196 // constexpr the function body can only contain a return
197 // statement and no assertion before this.
198 template<class Begin, class End>
199 auto integralRange(const Begin& begin, const End& end, const PriorityTag<0>&)
200 {
201 assert(begin <= end);
202 return Impl::DynamicIntegralRange<End>(begin, end);
203 }
204
205} // namespace Impl
206
207
208
226template<class Begin, class End>
227constexpr auto integralRange(const Begin& begin, const End& end)
228{
229 return Impl::integralRange(begin, end, PriorityTag<42>());
230}
231
245template<class End>
246constexpr auto integralRange(const End& end)
247{
249}
250
251
252
253namespace Impl {
254
255 template<class T>
256 void evaluateFoldExpression(std::initializer_list<T>&&)
257 {}
258
259 template<class Range, class F, class Index, Index... i>
260 constexpr void forEachIndex(Range&& range, F&& f, std::integer_sequence<Index, i...>)
261 {
262 evaluateFoldExpression<int>({(f(Hybrid::elementAt(range, std::integral_constant<Index,i>())), 0)...});
263 }
264
265 template<class F, class Index, Index... i>
266 constexpr void forEach(std::integer_sequence<Index, i...> range, F&& f, PriorityTag<2>)
267 {
268 evaluateFoldExpression<int>({(f(std::integral_constant<Index,i>()), 0)...});
269 }
270
271
272 template<class Range, class F,
273 std::enable_if_t<IsIntegralConstant<decltype(Hybrid::size(std::declval<Range>()))>::value, int> = 0>
274 constexpr void forEach(Range&& range, F&& f, PriorityTag<1>)
275 {
276 auto size = Hybrid::size(range);
277 auto indices = std::make_index_sequence<size>();
278 forEachIndex(std::forward<Range>(range), std::forward<F>(f), indices);
279 }
280
281 template<class Range, class F>
282 constexpr void forEach(Range&& range, F&& f, PriorityTag<0>)
283 {
284 for(std::size_t i=0; i<range.size(); ++i)
285 f(range[i]);
286 // \todo Switch to real range for once DynamicIntegralRange has proper iterators
287 // for(auto e : range)
288 // f(e);
289 }
290
291} // namespace Impl
292
293
294
313template<class Range, class F>
314constexpr void forEach(Range&& range, F&& f)
315{
316 Impl::forEach(std::forward<Range>(range), std::forward<F>(f), PriorityTag<42>());
317}
318
319
320
336template<class Range, class T, class F>
337T accumulate(Range&& range, T value, F&& f)
338{
339 forEach(std::forward<Range>(range), [&](auto&& entry) {
340 value = f(value, entry);
341 });
342 return value;
343}
344
345
346
347namespace Impl {
348
349 template<class IfFunc, class ElseFunc>
350 constexpr decltype(auto) ifElse(std::true_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
351 {
352 return ifFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
353 }
354
355 template<class IfFunc, class ElseFunc>
356 constexpr decltype(auto) ifElse(std::false_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
357 {
358 return elseFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
359 }
360
361 template<class IfFunc, class ElseFunc>
362 decltype(auto) ifElse(const bool& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
363 {
364 if (condition)
365 return ifFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
366 else
367 return elseFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
368 }
369
370} // namespace Impl
371
372
373
394template<class Condition, class IfFunc, class ElseFunc>
395decltype(auto) ifElse(const Condition& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
396{
397 return Impl::ifElse(condition, std::forward<IfFunc>(ifFunc), std::forward<ElseFunc>(elseFunc));
398}
399
407template<class Condition, class IfFunc>
408void ifElse(const Condition& condition, IfFunc&& ifFunc)
409{
410 ifElse(condition, std::forward<IfFunc>(ifFunc), [](auto&& i) {});
411}
412
413
414
415namespace Impl {
416
417 template<class T1, class T2>
418 constexpr auto equals(const T1& t1, const T2& t2, PriorityTag<1>) -> decltype(T1::value, T2::value, std::integral_constant<bool,T1::value == T2::value>())
419 { return {}; }
420
421 template<class T1, class T2>
422 constexpr auto equals(const T1& t1, const T2& t2, PriorityTag<0>)
423 {
424 return t1==t2;
425 }
426
427} // namespace Impl
428
429
430
440template<class T1, class T2>
441constexpr auto equals(T1&& t1, T2&& t2)
442{
443 return Impl::equals(std::forward<T1>(t1), std::forward<T2>(t2), PriorityTag<1>());
444}
445
446
447
448namespace Impl {
449
450 template<class Result, class T, class Value, class Branches, class ElseBranch>
451 constexpr Result switchCases(std::integer_sequence<T>, const Value& value, Branches&& branches, ElseBranch&& elseBranch)
452 {
453 return elseBranch();
454 }
455
456 template<class Result, class T, T t0, T... tt, class Value, class Branches, class ElseBranch>
457 constexpr Result switchCases(std::integer_sequence<T, t0, tt...>, const Value& value, Branches&& branches, ElseBranch&& elseBranch)
458 {
459 return ifElse(
460 Hybrid::equals(std::integral_constant<T, t0>(), value),
461 [&](auto id) -> decltype(auto) {
462 return id(branches)(std::integral_constant<T, t0>());
463 }, [&](auto id) -> decltype(auto) {
464 return Impl::switchCases<Result>(id(std::integer_sequence<T, tt...>()), value, branches, elseBranch);
465 });
466 }
467
468} // namespace Impl
469
470
471
499template<class Cases, class Value, class Branches, class ElseBranch>
500constexpr decltype(auto) switchCases(const Cases& cases, const Value& value, Branches&& branches, ElseBranch&& elseBranch)
501{
502 return Impl::switchCases<decltype(elseBranch())>(cases, value, std::forward<Branches>(branches), std::forward<ElseBranch>(elseBranch));
503}
504
525template<class Cases, class Value, class Branches>
526constexpr void switchCases(const Cases& cases, const Value& value, Branches&& branches)
527{
528 return Impl::switchCases<void>(cases, value, std::forward<Branches>(branches), []() {});
529}
530
531
532} // namespace Hybrid
533} // namespace Dune
534
535
536#endif // #ifndef DUNE_COMMON_HYBRIDUTILITIES_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:93
Implements a vector constructed from a given type representing a field and a compile-time given size.
constexpr index_constant< 0 > _0
Compile time index with value 0.
Definition: indices.hh:49
std::integral_constant< std::size_t, i > index_constant
An index constant with value i.
Definition: indices.hh:26
void ifElse(const Condition &condition, IfFunc &&ifFunc)
A conditional expression.
Definition: hybridutilities.hh:408
constexpr auto size(const T &t)
Size query.
Definition: hybridutilities.hh:85
constexpr auto integralRange(const End &end)
Create an integral range starting from 0.
Definition: hybridutilities.hh:246
constexpr auto equals(T1 &&t1, T2 &&t2)
Equality comparison.
Definition: hybridutilities.hh:441
constexpr void forEach(Range &&range, F &&f)
Range based for loop.
Definition: hybridutilities.hh:314
T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:337
constexpr void switchCases(const Cases &cases, const Value &value, Branches &&branches)
Switch statement.
Definition: hybridutilities.hh:526
constexpr decltype(auto) elementAt(Container &&c, Index &&i)
Get element at given position from container.
Definition: hybridutilities.hh:138
Dune namespace.
Definition: alignment.hh:11
Helper class for tagging priorities.
Definition: typeutilities.hh:60
Utilities for type computations, constraining overloads, ...
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jul 15, 22:36, 2024)