Dune Core Modules (2.5.0)

fmatrix.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_FMATRIX_HH
4#define DUNE_FMATRIX_HH
5
6#include <cmath>
7#include <cstddef>
8#include <iostream>
9#include <algorithm>
10#include <initializer_list>
11
18
19namespace Dune
20{
21
33 template< class K, int ROWS, int COLS > class FieldMatrix;
34
35 template< class K, int ROWS, int COLS >
36 struct DenseMatVecTraits< FieldMatrix<K,ROWS,COLS> >
37 {
38 typedef FieldMatrix<K,ROWS,COLS> derived_type;
39
40 // each row is implemented by a field vector
41 typedef FieldVector<K,COLS> row_type;
42
43 typedef row_type &row_reference;
44 typedef const row_type &const_row_reference;
45
46 typedef std::array<row_type,ROWS> container_type;
47 typedef K value_type;
48 typedef typename container_type::size_type size_type;
49 };
50
51 template< class K, int ROWS, int COLS >
52 struct FieldTraits< FieldMatrix<K,ROWS,COLS> >
53 {
54 typedef typename FieldTraits<K>::field_type field_type;
55 typedef typename FieldTraits<K>::real_type real_type;
56 };
57
66 template<class K, int ROWS, int COLS>
67 class FieldMatrix : public DenseMatrix< FieldMatrix<K,ROWS,COLS> >
68 {
69 std::array< FieldVector<K,COLS>, ROWS > _data;
71 public:
72
74 enum {
76 rows = ROWS,
78 cols = COLS
79 };
80
81 typedef typename Base::size_type size_type;
82 typedef typename Base::row_type row_type;
83
84 typedef typename Base::row_reference row_reference;
85 typedef typename Base::const_row_reference const_row_reference;
86
87 //===== constructors
91
94 FieldMatrix(std::initializer_list<Dune::FieldVector<K, cols> > const &l) {
95 assert(l.size() == rows); // Actually, this is not needed any more!
96 std::copy_n(l.begin(), std::min(static_cast<std::size_t>(ROWS),
97 l.size()),
98 _data.begin());
99 }
100
101 template <class T,
102 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
103 FieldMatrix(T const& rhs)
104 {
105 *this = rhs;
106 }
107
108 using Base::operator=;
109
110 // Specialisation: FieldMatrix assignment (compile-time bounds checking)
111 template <typename T, int rows, int cols>
112 FieldMatrix& operator=(FieldMatrix<T,rows,cols> const &rhs)
113 {
114 static_assert(rows == ROWS, "Size mismatch in matrix assignment (rows)");
115 static_assert(cols == COLS, "Size mismatch in matrix assignment (columns)");
116 _data = rhs._data;
117 return *this;
118 }
119
121 template<int l>
123 {
125
126 for (size_type i=0; i<l; i++) {
127 for (size_type j=0; j<cols; j++) {
128 C[i][j] = 0;
129 for (size_type k=0; k<rows; k++)
130 C[i][j] += M[i][k]*(*this)[k][j];
131 }
132 }
133 return C;
134 }
135
137
139 template <int r, int c>
141 {
142 static_assert(r == c, "Cannot rightmultiply with non-square matrix");
143 static_assert(r == cols, "Size mismatch");
145
146 for (size_type i=0; i<rows; i++)
147 for (size_type j=0; j<cols; j++) {
148 (*this)[i][j] = 0;
149 for (size_type k=0; k<cols; k++)
150 (*this)[i][j] += C[i][k]*M[k][j];
151 }
152 return *this;
153 }
154
156 template<int l>
158 {
160
161 for (size_type i=0; i<rows; i++) {
162 for (size_type j=0; j<l; j++) {
163 C[i][j] = 0;
164 for (size_type k=0; k<cols; k++)
165 C[i][j] += (*this)[i][k]*M[k][j];
166 }
167 }
168 return C;
169 }
170
171 // make this thing a matrix
172 constexpr size_type mat_rows() const { return ROWS; }
173 constexpr size_type mat_cols() const { return COLS; }
174
175 row_reference mat_access ( size_type i )
176 {
177 DUNE_ASSERT_BOUNDS(i < ROWS);
178 return _data[i];
179 }
180
181 const_row_reference mat_access ( size_type i ) const
182 {
183 DUNE_ASSERT_BOUNDS(i < ROWS);
184 return _data[i];
185 }
186 };
187
188#ifndef DOXYGEN // hide specialization
191 template<class K>
192 class FieldMatrix<K,1,1> : public DenseMatrix< FieldMatrix<K,1,1> >
193 {
194 FieldVector<K,1> _data;
195 typedef DenseMatrix< FieldMatrix<K,1,1> > Base;
196 public:
197 // standard constructor and everything is sufficient ...
198
199 //===== type definitions and constants
200
202 typedef typename Base::size_type size_type;
203
205 enum {
208 blocklevel = 1
209 };
210
211 typedef typename Base::row_type row_type;
212
213 typedef typename Base::row_reference row_reference;
214 typedef typename Base::const_row_reference const_row_reference;
215
217 enum {
220 rows = 1,
223 cols = 1
224 };
225
226 //===== constructors
229 FieldMatrix () {}
230
233 FieldMatrix(std::initializer_list<Dune::FieldVector<K, 1>> const &l)
234 {
235 std::copy_n(l.begin(), std::min(static_cast< std::size_t >( 1 ), l.size()), &_data);
236 }
237
238 template <class T,
239 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
240 FieldMatrix(T const& rhs)
241 {
242 *this = rhs;
243 }
244
245 using Base::operator=;
246
247 //===== solve
248
250 template<int l>
251 FieldMatrix<K,l,1> leftmultiplyany (const FieldMatrix<K,l,1>& M) const
252 {
253 FieldMatrix<K,l,1> C;
254 for (size_type j=0; j<l; j++)
255 C[j][0] = M[j][0]*(*this)[0][0];
256 return C;
257 }
258
261 {
262 _data[0] *= M[0][0];
263 return *this;
264 }
265
267 template<int l>
268 FieldMatrix<K,1,l> rightmultiplyany (const FieldMatrix<K,1,l>& M) const
269 {
270 FieldMatrix<K,1,l> C;
271
272 for (size_type j=0; j<l; j++)
273 C[0][j] = M[0][j]*_data[0];
274 return C;
275 }
276
277 // make this thing a matrix
278 constexpr size_type mat_rows() const { return 1; }
279 constexpr size_type mat_cols() const { return 1; }
280
281 row_reference mat_access ( size_type i )
282 {
284 DUNE_ASSERT_BOUNDS(i == 0);
285 return _data;
286 }
287
288 const_row_reference mat_access ( size_type i ) const
289 {
291 DUNE_ASSERT_BOUNDS(i == 0);
292 return _data;
293 }
294
296 FieldMatrix& operator+= (const K& k)
297 {
298 _data[0] += k;
299 return (*this);
300 }
301
303 FieldMatrix& operator-= (const K& k)
304 {
305 _data[0] -= k;
306 return (*this);
307 }
308
310 FieldMatrix& operator*= (const K& k)
311 {
312 _data[0] *= k;
313 return (*this);
314 }
315
317 FieldMatrix& operator/= (const K& k)
318 {
319 _data[0] /= k;
320 return (*this);
321 }
322
323 //===== conversion operator
324
325 operator const K& () const { return _data[0]; }
326
327 };
328
330 template<typename K>
331 std::ostream& operator<< (std::ostream& s, const FieldMatrix<K,1,1>& a)
332 {
333 s << a[0][0];
334 return s;
335 }
336
337#endif // DOXYGEN
338
339 namespace FMatrixHelp {
340
342 template <typename K>
343 static inline K invertMatrix (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
344 {
345 inverse[0][0] = 1.0/matrix[0][0];
346 return matrix[0][0];
347 }
348
350 template <typename K>
351 static inline K invertMatrix_retTransposed (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
352 {
353 return invertMatrix(matrix,inverse);
354 }
355
356
358 template <typename K>
359 static inline K invertMatrix (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
360 {
361 // code generated by maple
362 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
363 K det_1 = 1.0/det;
364 inverse[0][0] = matrix[1][1] * det_1;
365 inverse[0][1] = - matrix[0][1] * det_1;
366 inverse[1][0] = - matrix[1][0] * det_1;
367 inverse[1][1] = matrix[0][0] * det_1;
368 return det;
369 }
370
373 template <typename K>
374 static inline K invertMatrix_retTransposed (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
375 {
376 // code generated by maple
377 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
378 K det_1 = 1.0/det;
379 inverse[0][0] = matrix[1][1] * det_1;
380 inverse[1][0] = - matrix[0][1] * det_1;
381 inverse[0][1] = - matrix[1][0] * det_1;
382 inverse[1][1] = matrix[0][0] * det_1;
383 return det;
384 }
385
387 template <typename K>
388 static inline K invertMatrix (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
389 {
390 // code generated by maple
391 K t4 = matrix[0][0] * matrix[1][1];
392 K t6 = matrix[0][0] * matrix[1][2];
393 K t8 = matrix[0][1] * matrix[1][0];
394 K t10 = matrix[0][2] * matrix[1][0];
395 K t12 = matrix[0][1] * matrix[2][0];
396 K t14 = matrix[0][2] * matrix[2][0];
397
398 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
399 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
400 K t17 = 1.0/det;
401
402 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
403 inverse[0][1] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
404 inverse[0][2] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
405 inverse[1][0] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
406 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
407 inverse[1][2] = -(t6-t10) * t17;
408 inverse[2][0] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
409 inverse[2][1] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
410 inverse[2][2] = (t4-t8) * t17;
411
412 return det;
413 }
414
416 template <typename K>
417 static inline K invertMatrix_retTransposed (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
418 {
419 // code generated by maple
420 K t4 = matrix[0][0] * matrix[1][1];
421 K t6 = matrix[0][0] * matrix[1][2];
422 K t8 = matrix[0][1] * matrix[1][0];
423 K t10 = matrix[0][2] * matrix[1][0];
424 K t12 = matrix[0][1] * matrix[2][0];
425 K t14 = matrix[0][2] * matrix[2][0];
426
427 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
428 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
429 K t17 = 1.0/det;
430
431 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
432 inverse[1][0] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
433 inverse[2][0] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
434 inverse[0][1] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
435 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
436 inverse[2][1] = -(t6-t10) * t17;
437 inverse[0][2] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
438 inverse[1][2] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
439 inverse[2][2] = (t4-t8) * t17;
440
441 return det;
442 }
443
445 template< class K, int m, int n, int p >
446 static inline void multMatrix ( const FieldMatrix< K, m, n > &A,
447 const FieldMatrix< K, n, p > &B,
449 {
450 typedef typename FieldMatrix< K, m, p > :: size_type size_type;
451
452 for( size_type i = 0; i < m; ++i )
453 {
454 for( size_type j = 0; j < p; ++j )
455 {
456 ret[ i ][ j ] = K( 0 );
457 for( size_type k = 0; k < n; ++k )
458 ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
459 }
460 }
461 }
462
464 template <typename K, int rows, int cols>
466 {
467 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
468
469 for(size_type i=0; i<cols; i++)
470 for(size_type j=0; j<cols; j++)
471 {
472 ret[i][j]=0.0;
473 for(size_type k=0; k<rows; k++)
474 ret[i][j]+=matrix[k][i]*matrix[k][j];
475 }
476 }
477
478 using Dune::DenseMatrixHelp::multAssign;
479
481 template <typename K, int rows, int cols>
483 {
484 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
485
486 for(size_type i=0; i<cols; ++i)
487 {
488 ret[i] = 0.0;
489 for(size_type j=0; j<rows; ++j)
490 ret[i] += matrix[j][i]*x[j];
491 }
492 }
493
495 template <typename K, int rows, int cols>
497 {
499 multAssign(matrix,x,ret);
500 return ret;
501 }
502
504 template <typename K, int rows, int cols>
506 {
508 multAssignTransposed( matrix, x, ret );
509 return ret;
510 }
511
512 } // end namespace FMatrixHelp
513
516} // end namespace
517
518#include "fmatrixev.hh"
519#endif
Macro for wrapping boundary checks.
A dense n x m matrix.
Definition: densematrix.hh:154
DenseMatrix & operator/=(const field_type &k)
vector space division by scalar
Definition: densematrix.hh:324
DenseMatrix & operator+=(const DenseMatrix< Other > &y)
vector space addition
Definition: densematrix.hh:297
DenseMatrix & operator*=(const field_type &k)
vector space multiplication with scalar
Definition: densematrix.hh:316
DenseMatrix & operator-=(const DenseMatrix< Other > &y)
vector space subtraction
Definition: densematrix.hh:307
size_type M() const
number of columns
Definition: densematrix.hh:677
FieldMatrix< K, ROWS, COLS > & rightmultiply(const DenseMatrix< M2 > &M)
Multiplies M from the right to this matrix.
Definition: densematrix.hh:619
Traits::row_type row_type
The type used to represent a row (must fulfill the Dune::DenseVector interface)
Definition: densematrix.hh:180
Traits::size_type size_type
The type used for the index access and size operation.
Definition: densematrix.hh:177
Traits::const_row_reference const_row_reference
The type used to represent a reference to a constant row (usually const row_type &)
Definition: densematrix.hh:186
Traits::row_reference row_reference
The type used to represent a reference to a row (usually row_type &)
Definition: densematrix.hh:183
@ blocklevel
The number of block levels we contain. This is 1.
Definition: densematrix.hh:191
A dense n x m matrix.
Definition: fmatrix.hh:68
@ rows
The number of rows.
Definition: fmatrix.hh:76
@ cols
The number of columns.
Definition: fmatrix.hh:78
FieldMatrix< K, rows, l > rightmultiplyany(const FieldMatrix< K, cols, l > &M) const
Multiplies M from the right to this matrix, this matrix is not modified.
Definition: fmatrix.hh:157
FieldMatrix< K, l, cols > leftmultiplyany(const FieldMatrix< K, l, rows > &M) const
Multiplies M from the left to this matrix, this matrix is not modified.
Definition: fmatrix.hh:122
FieldMatrix & rightmultiply(const FieldMatrix< K, r, c > &M)
Multiplies M from the right to this matrix.
Definition: fmatrix.hh:140
FieldMatrix()
Default constructor.
Definition: fmatrix.hh:90
FieldMatrix(std::initializer_list< Dune::FieldVector< K, cols > > const &l)
Constructor initializing the matrix from a list of vector.
Definition: fmatrix.hh:94
vector space out of a tensor product of fields.
Definition: fvector.hh:93
Implements a matrix constructed from a given type representing a field and a compile-time given numbe...
A few common exception classes.
static FieldVector< K, cols > multTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x)
calculates ret = matrix^T * x
Definition: fmatrix.hh:505
static K invertMatrix_retTransposed(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:351
static void multMatrix(const FieldMatrix< K, m, n > &A, const FieldMatrix< K, n, p > &B, FieldMatrix< K, m, p > &ret)
calculates ret = A * B
Definition: fmatrix.hh:446
static K invertMatrix(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:343
static FieldVector< K, rows > mult(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, cols > &x)
calculates ret = matrix * x
Definition: fmatrix.hh:496
static void multTransposedMatrix(const FieldMatrix< K, rows, cols > &matrix, FieldMatrix< K, cols, cols > &ret)
calculates ret= A_t*A
Definition: fmatrix.hh:465
static void multAssignTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x, FieldVector< K, cols > &ret)
calculates ret = matrix^T * x
Definition: fmatrix.hh:482
Eigenvalue computations for the FieldMatrix class.
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_ASSERT_BOUNDS(cond)
If DUNE_CHECK_BOUNDS is defined: check if condition cond holds; otherwise, do nothing.
Definition: boundschecking.hh:28
Dune namespace.
Definition: alignment.hh:11
Various precision settings for calculations with FieldMatrix and FieldVector.
Traits for type conversions and type information.
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentionally unused function parameters with.
Definition: unused.hh:18
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 23, 23:29, 2024)