Dune Core Modules (2.3.1)

overlappingschwarz.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_OVERLAPPINGSCHWARZ_HH
4 #define DUNE_OVERLAPPINGSCHWARZ_HH
5 #include <cassert>
6 #include <algorithm>
7 #include <functional>
8 #include <vector>
9 #include <set>
10 #include <dune/common/dynmatrix.hh>
11 #include <dune/common/sllist.hh>
12 #include <dune/common/unused.hh>
13 #include "preconditioners.hh"
14 #include "superlu.hh"
15 #include "umfpack.hh"
16 #include "bvector.hh"
17 #include "bcrsmatrix.hh"
18 #include "ilusubdomainsolver.hh"
19 #include <dune/istl/solvertype.hh>
20 
21 namespace Dune
22 {
23 
35  template<class M, class X, class TM, class TD, class TA>
36  class SeqOverlappingSchwarz;
37 
41  template<class I, class S, class D>
43  {
44  public:
46  typedef D subdomain_vector;
47 
48  typedef I InitializerList;
49  typedef typename InitializerList::value_type AtomInitializer;
50  typedef typename AtomInitializer::Matrix Matrix;
51  typedef typename Matrix::const_iterator Iter;
52  typedef typename Matrix::row_type::const_iterator CIter;
53 
54  typedef S IndexSet;
55  typedef typename IndexSet::size_type size_type;
56 
57  OverlappingSchwarzInitializer(InitializerList& il,
58  const IndexSet& indices,
59  const subdomain_vector& domains);
60 
61 
62  void addRowNnz(const Iter& row);
63 
64  void allocate();
65 
66  void countEntries(const Iter& row, const CIter& col) const;
67 
68  void calcColstart() const;
69 
70  void copyValue(const Iter& row, const CIter& col) const;
71 
72  void createMatrix() const;
73  private:
74  class IndexMap
75  {
76  public:
77  typedef typename S::size_type size_type;
78  typedef std::map<size_type,size_type> Map;
79  typedef typename Map::iterator iterator;
80  typedef typename Map::const_iterator const_iterator;
81 
82  IndexMap();
83 
84  void insert(size_type grow);
85 
86  const_iterator find(size_type grow) const;
87 
88  iterator find(size_type grow);
89 
90  iterator begin();
91 
92  const_iterator begin() const;
93 
94  iterator end();
95 
96  const_iterator end() const;
97 
98  private:
99  std::map<size_type,size_type> map_;
100  size_type row;
101  };
102 
103 
104  typedef typename InitializerList::iterator InitIterator;
105  typedef typename IndexSet::const_iterator IndexIteratur;
106  InitializerList* initializers;
107  const IndexSet *indices;
108  mutable std::vector<IndexMap> indexMaps;
109  const subdomain_vector& domains;
110  };
111 
116  {};
117 
122  {};
123 
129  {};
130 
135  template<class M, class X, class Y>
137 
138  // Specialization for BCRSMatrix
139  template<class K, int n, class Al, class X, class Y>
140  class DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >
141  {
142  typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> M;
143  public:
145  typedef typename Dune::remove_const<M>::type matrix_type;
146  typedef K field_type;
147  typedef typename Dune::remove_const<M>::type rilu_type;
149  typedef X domain_type;
151  typedef Y range_type;
152 
158  {
159  assert(v.size() > 0);
160  assert(v.size() == d.size());
161  assert(A.rows() <= v.size());
162  assert(A.cols() <= v.size());
163  size_t sz = A.rows();
164  v.resize(sz);
165  d.resize(sz);
166  A.solve(v,d);
167  v.resize(v.capacity());
168  d.resize(d.capacity());
169  }
170 
178  template<class S>
179  void setSubMatrix(const M& BCRS, S& rowset)
180  {
181  size_t sz = rowset.size();
182  A.resize(sz*n,sz*n);
183  typedef typename S::const_iterator SIter;
184  size_t r = 0, c = 0;
185  for(SIter rowIdx = rowset.begin(), rowEnd=rowset.end();
186  rowIdx!= rowEnd; ++rowIdx, r++)
187  {
188  c = 0;
189  for(SIter colIdx = rowset.begin(), colEnd=rowset.end();
190  colIdx!= colEnd; ++colIdx, c++)
191  {
192  if (BCRS[*rowIdx].find(*colIdx) == BCRS[*rowIdx].end())
193  continue;
194  for (size_t i=0; i<n; i++)
195  {
196  for (size_t j=0; j<n; j++)
197  {
198  A[r*n+i][c*n+j] = BCRS[*rowIdx][*colIdx][i][j];
199  }
200  }
201  }
202  }
203  }
204  private:
205  DynamicMatrix<K> A;
206  };
207 
208  template<typename T, bool tag>
209  class OverlappingAssignerHelper
210  {};
211 
212  template<typename T>
213  struct OverlappingAssigner : public OverlappingAssignerHelper<T,Dune::StoresColumnCompressed<T>::value >
214  {
215  public:
216  OverlappingAssigner(std::size_t maxlength, const typename T::matrix_type& mat,
217  const typename T::range_type& b, typename T::range_type& x)
218  : OverlappingAssignerHelper<T,Dune::StoresColumnCompressed<T>::value >
219  (maxlength,mat,b,x)
220  {}
221  };
222 
223  // specialization for DynamicMatrix
224  template<class K, int n, class Al, class X, class Y>
225  class OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
226  {
227  public:
228  typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> matrix_type;
229  typedef K field_type;
230  typedef Y range_type;
231  typedef typename range_type::block_type block_type;
232  typedef typename matrix_type::size_type size_type;
233 
241  OverlappingAssignerHelper(std::size_t maxlength, const BCRSMatrix<FieldMatrix<K,n,n>, Al>& mat_, const X& b_, Y& x_);
242 
246  inline
247  void deallocate();
248 
252  inline
253  void resetIndexForNextDomain();
254 
259  inline
260  DynamicVector<K> & lhs();
261 
266  inline
267  DynamicVector<K> & rhs();
268 
273  inline
274  void relaxResult(field_type relax);
275 
280  void operator()(const size_type& domainIndex);
281 
289  inline
290  void assignResult(block_type& res);
291 
292  private:
296  const matrix_type* mat;
298  // we need a pointer, because we have to avoid deep copies
299  DynamicVector<field_type> * rhs_;
301  // we need a pointer, because we have to avoid deep copies
302  DynamicVector<field_type> * lhs_;
304  const range_type* b;
306  range_type* x;
308  std::size_t i;
310  std::size_t maxlength_;
311  };
312 
313 #if HAVE_SUPERLU || HAVE_UMFPACK
314  template<template<class> class S, int n, int m, typename T, typename A>
315  struct OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>, A> >, true>
316  {
317  typedef BCRSMatrix<FieldMatrix<T,n,m>, A> matrix_type;
318  typedef typename S<BCRSMatrix<FieldMatrix<T,n,m>, A> >::range_type range_type;
319  typedef typename range_type::field_type field_type;
320  typedef typename range_type::block_type block_type;
321 
322  typedef typename matrix_type::size_type size_type;
323 
331  OverlappingAssignerHelper(std::size_t maxlength, const matrix_type& mat,
332  const range_type& b, range_type& x);
338  void deallocate();
339 
340  /*
341  * @brief Resets the local index to zero.
342  */
343  void resetIndexForNextDomain();
344 
349  field_type* lhs();
350 
355  field_type* rhs();
356 
361  void relaxResult(field_type relax);
362 
367  void operator()(const size_type& domain);
368 
376  void assignResult(block_type& res);
377 
378  private:
382  const matrix_type* mat;
384  field_type* rhs_;
386  field_type* lhs_;
388  const range_type* b;
390  range_type* x;
392  std::size_t i;
394  std::size_t maxlength_;
395  };
396 
397 #endif
398 
399  template<class M, class X, class Y>
400  class OverlappingAssignerILUBase
401  {
402  public:
403  typedef M matrix_type;
404 
405  typedef typename M::field_type field_type;
406 
407  typedef typename Y::block_type block_type;
408 
409  typedef typename matrix_type::size_type size_type;
417  OverlappingAssignerILUBase(std::size_t maxlength, const M& mat,
418  const Y& b, X& x);
424  void deallocate();
425 
429  void resetIndexForNextDomain();
430 
435  X& lhs();
436 
441  Y& rhs();
442 
447  void relaxResult(field_type relax);
448 
453  void operator()(const size_type& domain);
454 
462  void assignResult(block_type& res);
463 
464  private:
468  const M* mat;
470  X* lhs_;
472  Y* rhs_;
474  const Y* b;
476  X* x;
478  size_type i;
479  };
480 
481  // specialization for ILU0
482  template<class M, class X, class Y>
483  class OverlappingAssignerHelper<ILU0SubdomainSolver<M,X,Y>, false>
484  : public OverlappingAssignerILUBase<M,X,Y>
485  {
486  public:
494  OverlappingAssignerHelper(std::size_t maxlength, const M& mat,
495  const Y& b, X& x)
496  : OverlappingAssignerILUBase<M,X,Y>(maxlength, mat,b,x)
497  {}
498  };
499 
500  // specialization for ILUN
501  template<class M, class X, class Y>
502  class OverlappingAssignerHelper<ILUNSubdomainSolver<M,X,Y>,false>
503  : public OverlappingAssignerILUBase<M,X,Y>
504  {
505  public:
513  OverlappingAssignerHelper(std::size_t maxlength, const M& mat,
514  const Y& b, X& x)
515  : OverlappingAssignerILUBase<M,X,Y>(maxlength, mat,b,x)
516  {}
517  };
518 
519  template<typename S, typename T>
520  struct AdditiveAdder
521  {};
522 
523  template<typename S, typename T, typename A, int n>
524  struct AdditiveAdder<S, BlockVector<FieldVector<T,n>,A> >
525  {
526  typedef typename A::size_type size_type;
527  AdditiveAdder(BlockVector<FieldVector<T,n>,A>& v, BlockVector<FieldVector<T,n>,A>& x,
528  OverlappingAssigner<S>& assigner, const T& relax_);
529  void operator()(const size_type& domain);
530  void axpy();
531 
532  private:
533  BlockVector<FieldVector<T,n>,A>* v;
534  BlockVector<FieldVector<T,n>,A>* x;
535  OverlappingAssigner<S>* assigner;
536  T relax;
537  };
538 
539  template<typename S,typename T>
540  struct MultiplicativeAdder
541  {};
542 
543  template<typename S, typename T, typename A, int n>
544  struct MultiplicativeAdder<S, BlockVector<FieldVector<T,n>,A> >
545  {
546  typedef typename A::size_type size_type;
547  MultiplicativeAdder(BlockVector<FieldVector<T,n>,A>& v, BlockVector<FieldVector<T,n>,A>& x,
548  OverlappingAssigner<S>& assigner_, const T& relax_);
549  void operator()(const size_type& domain);
550  void axpy();
551 
552  private:
553  BlockVector<FieldVector<T,n>,A>* x;
554  OverlappingAssigner<S>* assigner;
555  T relax;
556  };
557 
567  template<typename T, class X, class S>
569  {};
570 
571  template<class X, class S>
573  {
574  typedef AdditiveAdder<S,X> Adder;
575  };
576 
577  template<class X, class S>
578  struct AdderSelector<MultiplicativeSchwarzMode,X,S>
579  {
580  typedef MultiplicativeAdder<S,X> Adder;
581  };
582 
583  template<class X, class S>
584  struct AdderSelector<SymmetricMultiplicativeSchwarzMode,X,S>
585  {
586  typedef MultiplicativeAdder<S,X> Adder;
587  };
588 
600  template<typename T1, typename T2, bool forward>
602  {
603  typedef T1 solver_vector;
604  typedef typename solver_vector::iterator solver_iterator;
605  typedef T2 subdomain_vector;
606  typedef typename subdomain_vector::const_iterator domain_iterator;
607 
608  static solver_iterator begin(solver_vector& sv)
609  {
610  return sv.begin();
611  }
612 
613  static solver_iterator end(solver_vector& sv)
614  {
615  return sv.end();
616  }
617  static domain_iterator begin(const subdomain_vector& sv)
618  {
619  return sv.begin();
620  }
621 
622  static domain_iterator end(const subdomain_vector& sv)
623  {
624  return sv.end();
625  }
626  };
627 
628  template<typename T1, typename T2>
629  struct IteratorDirectionSelector<T1,T2,false>
630  {
631  typedef T1 solver_vector;
632  typedef typename solver_vector::reverse_iterator solver_iterator;
633  typedef T2 subdomain_vector;
634  typedef typename subdomain_vector::const_reverse_iterator domain_iterator;
635 
636  static solver_iterator begin(solver_vector& sv)
637  {
638  return sv.rbegin();
639  }
640 
641  static solver_iterator end(solver_vector& sv)
642  {
643  return sv.rend();
644  }
645  static domain_iterator begin(const subdomain_vector& sv)
646  {
647  return sv.rbegin();
648  }
649 
650  static domain_iterator end(const subdomain_vector& sv)
651  {
652  return sv.rend();
653  }
654  };
655 
664  template<class T>
666  {
667  typedef T smoother;
668  typedef typename smoother::range_type range_type;
669 
670  static void apply(smoother& sm, range_type& v, const range_type& b)
671  {
672  sm.template apply<true>(v, b);
673  }
674  };
675 
676  template<class M, class X, class TD, class TA>
678  {
680  typedef typename smoother::range_type range_type;
681 
682  static void apply(smoother& sm, range_type& v, const range_type& b)
683  {
684  sm.template apply<true>(v, b);
685  sm.template apply<false>(v, b);
686  }
687  };
688 
689  template<class T, bool tag>
690  struct SeqOverlappingSchwarzAssemblerHelper
691  {};
692 
693  template<class T>
694  struct SeqOverlappingSchwarzAssembler
695  : public SeqOverlappingSchwarzAssemblerHelper<T,Dune::StoresColumnCompressed<T>::value>
696  {};
697 
698 
699  template<class K, int n, class Al, class X, class Y>
700  struct SeqOverlappingSchwarzAssemblerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
701  {
702  typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> matrix_type;
703  template<class RowToDomain, class Solvers, class SubDomains>
704  static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
705  Solvers& solvers, const SubDomains& domains,
706  bool onTheFly);
707  };
708 
709  template<template<class> class S, typename T, typename A, int m, int n>
710  struct SeqOverlappingSchwarzAssemblerHelper<S<BCRSMatrix<FieldMatrix<T,m,n>,A> >,true>
711  {
712  typedef BCRSMatrix<FieldMatrix<T,m,n>,A> matrix_type;
713  template<class RowToDomain, class Solvers, class SubDomains>
714  static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
715  Solvers& solvers, const SubDomains& domains,
716  bool onTheFly);
717  };
718 
719  template<class M,class X, class Y>
720  struct SeqOverlappingSchwarzAssemblerILUBase
721  {
722  typedef M matrix_type;
723  template<class RowToDomain, class Solvers, class SubDomains>
724  static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
725  Solvers& solvers, const SubDomains& domains,
726  bool onTheFly);
727  };
728 
729  template<class M,class X, class Y>
730  struct SeqOverlappingSchwarzAssemblerHelper<ILU0SubdomainSolver<M,X,Y>,false>
731  : public SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>
732  {};
733 
734  template<class M,class X, class Y>
735  struct SeqOverlappingSchwarzAssemblerHelper<ILUNSubdomainSolver<M,X,Y>,false>
736  : public SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>
737  {};
738 
749  template<class M, class X, class TM=AdditiveSchwarzMode,
750  class TD=ILU0SubdomainSolver<M,X,X>, class TA=std::allocator<X> >
752  : public Preconditioner<X,X>
753  {
754  public:
758  typedef M matrix_type;
759 
763  typedef X domain_type;
764 
768  typedef X range_type;
769 
776  typedef TM Mode;
777 
781  typedef typename X::field_type field_type;
782 
784  typedef typename matrix_type::size_type size_type;
785 
787  typedef TA allocator;
788 
790  typedef std::set<size_type, std::less<size_type>,
791  typename TA::template rebind<size_type>::other>
793 
795  typedef std::vector<subdomain_type, typename TA::template rebind<subdomain_type>::other> subdomain_vector;
796 
799 
801  typedef std::vector<subdomain_list, typename TA::template rebind<subdomain_list>::other > rowtodomain_vector;
802 
804  typedef TD slu;
805 
807  typedef std::vector<slu, typename TA::template rebind<slu>::other> slu_vector;
808 
809  enum {
812  };
813 
827  SeqOverlappingSchwarz(const matrix_type& mat, const subdomain_vector& subDomains,
828  field_type relaxationFactor=1, bool onTheFly_=true);
829 
841  SeqOverlappingSchwarz(const matrix_type& mat, const rowtodomain_vector& rowToDomain,
842  field_type relaxationFactor=1, bool onTheFly_=true);
843 
849  virtual void pre (X& x, X& b)
850  {
853  }
854 
860  virtual void apply (X& v, const X& d);
861 
867  virtual void post (X& x)
868  {
870  }
871 
872  template<bool forward>
873  void apply(X& v, const X& d);
874 
875  private:
876  const M& mat;
877  slu_vector solvers;
878  subdomain_vector subDomains;
879  field_type relax;
880 
881  typename M::size_type maxlength;
882 
883  bool onTheFly;
884  };
885 
886 
887 
888  template<class I, class S, class D>
890  const IndexSet& idx,
891  const subdomain_vector& domains_)
892  : initializers(&il), indices(&idx), indexMaps(il.size()), domains(domains_)
893  {}
894 
895 
896  template<class I, class S, class D>
897  void OverlappingSchwarzInitializer<I,S,D>::addRowNnz(const Iter& row)
898  {
899  typedef typename IndexSet::value_type::const_iterator iterator;
900  for(iterator domain=(*indices)[row.index()].begin(); domain != (*indices)[row.index()].end(); ++domain) {
901  (*initializers)[*domain].addRowNnz(row, domains[*domain]);
902  indexMaps[*domain].insert(row.index());
903  }
904  }
905 
906  template<class I, class S, class D>
907  void OverlappingSchwarzInitializer<I,S,D>::allocate()
908  {
909  std::for_each(initializers->begin(), initializers->end(),
910  std::mem_fun_ref(&AtomInitializer::allocateMatrixStorage));
911  std::for_each(initializers->begin(), initializers->end(),
912  std::mem_fun_ref(&AtomInitializer::allocateMarker));
913  }
914 
915  template<class I, class S, class D>
916  void OverlappingSchwarzInitializer<I,S,D>::countEntries(const Iter& row, const CIter& col) const
917  {
918  typedef typename IndexSet::value_type::const_iterator iterator;
919  for(iterator domain=(*indices)[row.index()].begin(); domain != (*indices)[row.index()].end(); ++domain) {
920  typename std::map<size_type,size_type>::const_iterator v = indexMaps[*domain].find(col.index());
921  if(v!= indexMaps[*domain].end()) {
922  (*initializers)[*domain].countEntries(indexMaps[*domain].find(col.index())->second);
923  }
924  }
925  }
926 
927  template<class I, class S, class D>
928  void OverlappingSchwarzInitializer<I,S,D>::calcColstart() const
929  {
930  std::for_each(initializers->begin(), initializers->end(),
931  std::mem_fun_ref(&AtomInitializer::calcColstart));
932  }
933 
934  template<class I, class S, class D>
935  void OverlappingSchwarzInitializer<I,S,D>::copyValue(const Iter& row, const CIter& col) const
936  {
937  typedef typename IndexSet::value_type::const_iterator iterator;
938  for(iterator domain=(*indices)[row.index()].begin(); domain!= (*indices)[row.index()].end(); ++domain) {
939  typename std::map<size_type,size_type>::const_iterator v = indexMaps[*domain].find(col.index());
940  if(v!= indexMaps[*domain].end()) {
941  assert(indexMaps[*domain].end()!=indexMaps[*domain].find(row.index()));
942  (*initializers)[*domain].copyValue(col, indexMaps[*domain].find(row.index())->second,
943  v->second);
944  }
945  }
946  }
947 
948  template<class I, class S, class D>
949  void OverlappingSchwarzInitializer<I,S,D>::createMatrix() const
950  {
951  std::vector<IndexMap>().swap(indexMaps);
952  std::for_each(initializers->begin(), initializers->end(),
953  std::mem_fun_ref(&AtomInitializer::createMatrix));
954  }
955 
956  template<class I, class S, class D>
957  OverlappingSchwarzInitializer<I,S,D>::IndexMap::IndexMap()
958  : row(0)
959  {}
960 
961  template<class I, class S, class D>
962  void OverlappingSchwarzInitializer<I,S,D>::IndexMap::insert(size_type grow)
963  {
964  assert(map_.find(grow)==map_.end());
965  map_.insert(std::make_pair(grow, row++));
966  }
967 
968  template<class I, class S, class D>
969  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
970  OverlappingSchwarzInitializer<I,S,D>::IndexMap::find(size_type grow) const
971  {
972  return map_.find(grow);
973  }
974 
975  template<class I, class S, class D>
976  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
977  OverlappingSchwarzInitializer<I,S,D>::IndexMap::find(size_type grow)
978  {
979  return map_.find(grow);
980  }
981 
982  template<class I, class S, class D>
983  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
984  OverlappingSchwarzInitializer<I,S,D>::IndexMap::end() const
985  {
986  return map_.end();
987  }
988 
989  template<class I, class S, class D>
990  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
991  OverlappingSchwarzInitializer<I,S,D>::IndexMap::end()
992  {
993  return map_.end();
994  }
995 
996  template<class I, class S, class D>
997  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
998  OverlappingSchwarzInitializer<I,S,D>::IndexMap::begin() const
999  {
1000  return map_.begin();
1001  }
1002 
1003  template<class I, class S, class D>
1004  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
1005  OverlappingSchwarzInitializer<I,S,D>::IndexMap::begin()
1006  {
1007  return map_.begin();
1008  }
1009 
1010  template<class M, class X, class TM, class TD, class TA>
1012  field_type relaxationFactor, bool fly)
1013  : mat(mat_), relax(relaxationFactor), onTheFly(fly)
1014  {
1015  typedef typename rowtodomain_vector::const_iterator RowDomainIterator;
1016  typedef typename subdomain_list::const_iterator DomainIterator;
1017 #ifdef DUNE_ISTL_WITH_CHECKING
1018  assert(rowToDomain.size()==mat.N());
1019  assert(rowToDomain.size()==mat.M());
1020 
1021  for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter)
1022  assert(iter->size()>0);
1023 
1024 #endif
1025  // calculate the number of domains
1026  size_type domains=0;
1027  for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter)
1028  for(DomainIterator d=iter->begin(); d != iter->end(); ++d)
1029  domains=std::max(domains, *d);
1030  ++domains;
1031 
1032  solvers.resize(domains);
1033  subDomains.resize(domains);
1034 
1035  // initialize subdomains to row mapping from row to subdomain mapping
1036  size_type row=0;
1037  for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter, ++row)
1038  for(DomainIterator d=iter->begin(); d != iter->end(); ++d)
1039  subDomains[*d].insert(row);
1040 
1041 #ifdef DUNE_ISTL_WITH_CHECKING
1042  size_type i=0;
1043  typedef typename subdomain_vector::const_iterator iterator;
1044  for(iterator iter=subDomains.begin(); iter != subDomains.end(); ++iter) {
1045  typedef typename subdomain_type::const_iterator entry_iterator;
1046  Dune::dvverb<<"domain "<<i++<<":";
1047  for(entry_iterator entry = iter->begin(); entry != iter->end(); ++entry) {
1048  Dune::dvverb<<" "<<*entry;
1049  }
1050  Dune::dvverb<<std::endl;
1051  }
1052 #endif
1053  maxlength = SeqOverlappingSchwarzAssembler<slu>
1054  ::assembleLocalProblems(rowToDomain, mat, solvers, subDomains, onTheFly);
1055  }
1056 
1057  template<class M, class X, class TM, class TD, class TA>
1059  const subdomain_vector& sd,
1060  field_type relaxationFactor,
1061  bool fly)
1062  : mat(mat_), solvers(sd.size()), subDomains(sd), relax(relaxationFactor),
1063  onTheFly(fly)
1064  {
1065  typedef typename subdomain_vector::const_iterator DomainIterator;
1066 
1067 #ifdef DUNE_ISTL_WITH_CHECKING
1068  size_type i=0;
1069 
1070  for(DomainIterator d=sd.begin(); d != sd.end(); ++d,++i) {
1071  //std::cout<<i<<": "<<d->size()<<std::endl;
1072  assert(d->size()>0);
1073  typedef typename DomainIterator::value_type::const_iterator entry_iterator;
1074  Dune::dvverb<<"domain "<<i<<":";
1075  for(entry_iterator entry = d->begin(); entry != d->end(); ++entry) {
1076  Dune::dvverb<<" "<<*entry;
1077  }
1078  Dune::dvverb<<std::endl;
1079  }
1080 
1081 #endif
1082 
1083  // Create a row to subdomain mapping
1084  rowtodomain_vector rowToDomain(mat.N());
1085 
1086  size_type domainId=0;
1087 
1088  for(DomainIterator domain=sd.begin(); domain != sd.end(); ++domain, ++domainId) {
1089  typedef typename subdomain_type::const_iterator iterator;
1090  for(iterator row=domain->begin(); row != domain->end(); ++row)
1091  rowToDomain[*row].push_back(domainId);
1092  }
1093 
1094  maxlength = SeqOverlappingSchwarzAssembler<slu>
1095  ::assembleLocalProblems(rowToDomain, mat, solvers, subDomains, onTheFly);
1096  }
1097 
1104  template<class M>
1106 
1107  template<typename T, typename A, int n, int m>
1109  {
1110  template<class Domain>
1111  static int size(const Domain & d)
1112  {
1113  assert(n==m);
1114  return m*d.size();
1115  }
1116  };
1117 
1118  template<class K, int n, class Al, class X, class Y>
1119  template<class RowToDomain, class Solvers, class SubDomains>
1120  std::size_t
1121  SeqOverlappingSchwarzAssemblerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>::
1122  assembleLocalProblems(const RowToDomain& rowToDomain,
1123  const matrix_type& mat,
1124  Solvers& solvers,
1125  const SubDomains& subDomains,
1126  bool onTheFly)
1127  {
1128  DUNE_UNUSED_PARAMETER(rowToDomain);
1129  DUNE_UNUSED_PARAMETER(mat);
1130  DUNE_UNUSED_PARAMETER(solvers);
1131  typedef typename SubDomains::const_iterator DomainIterator;
1132  std::size_t maxlength = 0;
1133 
1134  assert(onTheFly);
1135 
1136  for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end(); ++domain)
1137  maxlength=std::max(maxlength, domain->size());
1138  maxlength*=n;
1139 
1140  return maxlength;
1141  }
1142 
1143 #if HAVE_SUPERLU || HAVE_UMFPACK
1144  template<template<class> class S, typename T, typename A, int m, int n>
1145  template<class RowToDomain, class Solvers, class SubDomains>
1146  std::size_t SeqOverlappingSchwarzAssemblerHelper<S<BCRSMatrix<FieldMatrix<T,m,n>,A> >,true>::assembleLocalProblems(const RowToDomain& rowToDomain,
1147  const matrix_type& mat,
1148  Solvers& solvers,
1149  const SubDomains& subDomains,
1150  bool onTheFly)
1151  {
1152  typedef typename S<BCRSMatrix<FieldMatrix<T,m,n>,A> >::MatrixInitializer MatrixInitializer;
1153  typedef typename std::vector<MatrixInitializer>::iterator InitializerIterator;
1154  typedef typename SubDomains::const_iterator DomainIterator;
1155  typedef typename Solvers::iterator SolverIterator;
1156  std::size_t maxlength = 0;
1157 
1158  if(onTheFly) {
1159  for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end(); ++domain)
1160  maxlength=std::max(maxlength, domain->size());
1161  maxlength*=mat[0].begin()->N();
1162  }else{
1163  // initialize the initializers
1164  DomainIterator domain=subDomains.begin();
1165 
1166  // Create the initializers list.
1167  std::vector<MatrixInitializer> initializers(subDomains.size());
1168 
1169  SolverIterator solver=solvers.begin();
1170  for(InitializerIterator initializer=initializers.begin(); initializer!=initializers.end();
1171  ++initializer, ++solver, ++domain) {
1172  solver->mat.N_=SeqOverlappingSchwarzDomainSize<matrix_type>::size(*domain);
1173  solver->mat.M_=SeqOverlappingSchwarzDomainSize<matrix_type>::size(*domain);
1174  //solver->setVerbosity(true);
1175  *initializer=MatrixInitializer(solver->mat);
1176  }
1177 
1178  // Set up the supermatrices according to the subdomains
1179  typedef OverlappingSchwarzInitializer<std::vector<MatrixInitializer>,
1180  RowToDomain, SubDomains> Initializer;
1181 
1182  Initializer initializer(initializers, rowToDomain, subDomains);
1183  copyToColCompMatrix(initializer, mat);
1184 
1185  // Calculate the LU decompositions
1186  std::for_each(solvers.begin(), solvers.end(), std::mem_fun_ref(&S<BCRSMatrix<FieldMatrix<T,m,n>,A> >::decompose));
1187  for(SolverIterator solver=solvers.begin(); solver!=solvers.end(); ++solver) {
1188  assert(solver->mat.N()==solver->mat.M());
1189  maxlength=std::max(maxlength, solver->mat.N());
1190  }
1191  }
1192  return maxlength;
1193  }
1194 
1195 #endif
1196 
1197  template<class M,class X,class Y>
1198  template<class RowToDomain, class Solvers, class SubDomains>
1199  std::size_t SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>::assembleLocalProblems(const RowToDomain& rowToDomain,
1200  const matrix_type& mat,
1201  Solvers& solvers,
1202  const SubDomains& subDomains,
1203  bool onTheFly)
1204  {
1205  DUNE_UNUSED_PARAMETER(rowToDomain);
1206  typedef typename SubDomains::const_iterator DomainIterator;
1207  typedef typename Solvers::iterator SolverIterator;
1208  std::size_t maxlength = 0;
1209 
1210  if(onTheFly) {
1211  for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end(); ++domain)
1212  maxlength=std::max(maxlength, domain->size());
1213  }else{
1214  // initialize the solvers of the local prolems.
1215  SolverIterator solver=solvers.begin();
1216  for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end();
1217  ++domain, ++solver) {
1218  solver->setSubMatrix(mat, *domain);
1219  maxlength=std::max(maxlength, domain->size());
1220  }
1221  }
1222 
1223  return maxlength;
1224 
1225  }
1226 
1227 
1228  template<class M, class X, class TM, class TD, class TA>
1230  {
1232  }
1233 
1234  template<class M, class X, class TM, class TD, class TA>
1235  template<bool forward>
1236  void SeqOverlappingSchwarz<M,X,TM,TD,TA>::apply(X& x, const X& b)
1237  {
1238  typedef slu_vector solver_vector;
1239  typedef typename IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::solver_iterator iterator;
1240  typedef typename IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::domain_iterator
1241  domain_iterator;
1242 
1243  OverlappingAssigner<TD> assigner(maxlength, mat, b, x);
1244 
1247  X v(x); // temporary for the update
1248  v=0;
1249 
1250  typedef typename AdderSelector<TM,X,TD >::Adder Adder;
1251  Adder adder(v, x, assigner, relax);
1252 
1253  for(; domain != IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::end(subDomains); ++domain) {
1254  //Copy rhs to C-array for SuperLU
1255  std::for_each(domain->begin(), domain->end(), assigner);
1256  assigner.resetIndexForNextDomain();
1257  if(onTheFly) {
1258  // Create the subdomain solver
1259  slu sdsolver;
1260  sdsolver.setSubMatrix(mat, *domain);
1261  // Apply
1262  sdsolver.apply(assigner.lhs(), assigner.rhs());
1263  }else{
1264  solver->apply(assigner.lhs(), assigner.rhs());
1265  ++solver;
1266  }
1267 
1268  //Add relaxed correction to from SuperLU to v
1269  std::for_each(domain->begin(), domain->end(), adder);
1270  assigner.resetIndexForNextDomain();
1271 
1272  }
1273 
1274  adder.axpy();
1275  assigner.deallocate();
1276  }
1277 
1278  template<class K, int n, class Al, class X, class Y>
1279  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1280  ::OverlappingAssignerHelper(std::size_t maxlength, const BCRSMatrix<FieldMatrix<K,n,n>, Al>& mat_,
1281  const X& b_, Y& x_) :
1282  mat(&mat_),
1283  rhs_( new DynamicVector<field_type>(maxlength, 42) ),
1284  lhs_( new DynamicVector<field_type>(maxlength, -42) ),
1285  b(&b_),
1286  x(&x_),
1287  i(0),
1288  maxlength_(maxlength)
1289  {}
1290 
1291  template<class K, int n, class Al, class X, class Y>
1292  void
1293  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1294  ::deallocate()
1295  {
1296  delete rhs_;
1297  delete lhs_;
1298  }
1299 
1300  template<class K, int n, class Al, class X, class Y>
1301  void
1302  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1303  ::resetIndexForNextDomain()
1304  {
1305  i=0;
1306  }
1307 
1308  template<class K, int n, class Al, class X, class Y>
1310  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1311  ::lhs()
1312  {
1313  return *lhs_;
1314  }
1315 
1316  template<class K, int n, class Al, class X, class Y>
1318  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1319  ::rhs()
1320  {
1321  return *rhs_;
1322  }
1323 
1324  template<class K, int n, class Al, class X, class Y>
1325  void
1326  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1327  ::relaxResult(field_type relax)
1328  {
1329  lhs() *= relax;
1330  }
1331 
1332  template<class K, int n, class Al, class X, class Y>
1333  void
1334  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1335  ::operator()(const size_type& domainIndex)
1336  {
1337  lhs() = 0.0;
1338 #if 0
1339  //assign right hand side of current domainindex block
1340  for(size_type j=0; j<n; ++j, ++i) {
1341  assert(i<maxlength_);
1342  rhs()[i]=(*b)[domainIndex][j];
1343  }
1344 
1345  // loop over all Matrix row entries and calculate defect.
1346  typedef typename matrix_type::ConstColIterator col_iterator;
1347 
1348  // calculate defect for current row index block
1349  for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
1350  block_type tmp(0.0);
1351  (*col).mv((*x)[col.index()], tmp);
1352  i-=n;
1353  for(size_type j=0; j<n; ++j, ++i) {
1354  assert(i<maxlength_);
1355  rhs()[i]-=tmp[j];
1356  }
1357  }
1358 #else
1359  //assign right hand side of current domainindex block
1360  for(size_type j=0; j<n; ++j, ++i) {
1361  assert(i<maxlength_);
1362  rhs()[i]=(*b)[domainIndex][j];
1363 
1364  // loop over all Matrix row entries and calculate defect.
1365  typedef typename matrix_type::ConstColIterator col_iterator;
1366 
1367  // calculate defect for current row index block
1368  for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
1369  for(size_type k=0; k<n; ++k) {
1370  rhs()[i]-=(*col)[j][k] * (*x)[col.index()][k];
1371  }
1372  }
1373  }
1374 #endif
1375  }
1376 
1377  template<class K, int n, class Al, class X, class Y>
1378  void
1379  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
1380  ::assignResult(block_type& res)
1381  {
1382  // assign the result of the local solve to the global vector
1383  for(size_type j=0; j<n; ++j, ++i) {
1384  assert(i<maxlength_);
1385  res[j]+=lhs()[i];
1386  }
1387  }
1388 
1389 #if HAVE_SUPERLU || HAVE_UMFPACK
1390 
1391  template<template<class> class S, int n, int m, typename T, typename A>
1392  OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>
1393  ::OverlappingAssignerHelper(std::size_t maxlength,
1394  const BCRSMatrix<FieldMatrix<T,n,m>,A>& mat_,
1395  const range_type& b_,
1396  range_type& x_)
1397  : mat(&mat_),
1398  b(&b_),
1399  x(&x_), i(0), maxlength_(maxlength)
1400  {
1401  rhs_ = new field_type[maxlength];
1402  lhs_ = new field_type[maxlength];
1403 
1404  }
1405 
1406  template<template<class> class S, int n, int m, typename T, typename A>
1407  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::deallocate()
1408  {
1409  delete[] rhs_;
1410  delete[] lhs_;
1411  }
1412 
1413  template<template<class> class S, int n, int m, typename T, typename A>
1414  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::operator()(const size_type& domainIndex)
1415  {
1416  //assign right hand side of current domainindex block
1417  // rhs is an array of doubles!
1418  // rhs[starti] = b[domainindex]
1419  for(size_type j=0; j<n; ++j, ++i) {
1420  assert(i<maxlength_);
1421  rhs_[i]=(*b)[domainIndex][j];
1422  }
1423 
1424 
1425  // loop over all Matrix row entries and calculate defect.
1426  typedef typename matrix_type::ConstColIterator col_iterator;
1427 
1428  // calculate defect for current row index block
1429  for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
1430  block_type tmp;
1431  (*col).mv((*x)[col.index()], tmp);
1432  i-=n;
1433  for(size_type j=0; j<n; ++j, ++i) {
1434  assert(i<maxlength_);
1435  rhs_[i]-=tmp[j];
1436  }
1437 
1438  }
1439 
1440  }
1441 
1442  template<template<class> class S, int n, int m, typename T, typename A>
1443  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::relaxResult(field_type relax)
1444  {
1445  for(size_type j=i+n; i<j; ++i) {
1446  assert(i<maxlength_);
1447  lhs_[i]*=relax;
1448  }
1449  i-=n;
1450  }
1451 
1452  template<template<class> class S, int n, int m, typename T, typename A>
1453  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::assignResult(block_type& res)
1454  {
1455  // assign the result of the local solve to the global vector
1456  for(size_type j=0; j<n; ++j, ++i) {
1457  assert(i<maxlength_);
1458  res[j]+=lhs_[i];
1459  }
1460  }
1461 
1462  template<template<class> class S, int n, int m, typename T, typename A>
1463  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::resetIndexForNextDomain()
1464  {
1465  i=0;
1466  }
1467 
1468  template<template<class> class S, int n, int m, typename T, typename A>
1469  typename OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::field_type*
1470  OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::lhs()
1471  {
1472  return lhs_;
1473  }
1474 
1475  template<template<class> class S, int n, int m, typename T, typename A>
1476  typename OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::field_type*
1477  OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::rhs()
1478  {
1479  return rhs_;
1480  }
1481 
1482 #endif
1483 
1484  template<class M, class X, class Y>
1485  OverlappingAssignerILUBase<M,X,Y>::OverlappingAssignerILUBase(std::size_t maxlength,
1486  const M& mat_,
1487  const Y& b_,
1488  X& x_)
1489  : mat(&mat_),
1490  b(&b_),
1491  x(&x_), i(0)
1492  {
1493  rhs_= new Y(maxlength);
1494  lhs_ = new X(maxlength);
1495  }
1496 
1497  template<class M, class X, class Y>
1498  void OverlappingAssignerILUBase<M,X,Y>::deallocate()
1499  {
1500  delete rhs_;
1501  delete lhs_;
1502  }
1503 
1504  template<class M, class X, class Y>
1505  void OverlappingAssignerILUBase<M,X,Y>::operator()(const size_type& domainIndex)
1506  {
1507  (*rhs_)[i]=(*b)[domainIndex];
1508 
1509  // loop over all Matrix row entries and calculate defect.
1510  typedef typename matrix_type::ConstColIterator col_iterator;
1511 
1512  // calculate defect for current row index block
1513  for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
1514  (*col).mmv((*x)[col.index()], (*rhs_)[i]);
1515  }
1516  // Goto next local index
1517  ++i;
1518  }
1519 
1520  template<class M, class X, class Y>
1521  void OverlappingAssignerILUBase<M,X,Y>::relaxResult(field_type relax)
1522  {
1523  (*lhs_)[i]*=relax;
1524  }
1525 
1526  template<class M, class X, class Y>
1527  void OverlappingAssignerILUBase<M,X,Y>::assignResult(block_type& res)
1528  {
1529  res+=(*lhs_)[i++];
1530  }
1531 
1532  template<class M, class X, class Y>
1533  X& OverlappingAssignerILUBase<M,X,Y>::lhs()
1534  {
1535  return *lhs_;
1536  }
1537 
1538  template<class M, class X, class Y>
1539  Y& OverlappingAssignerILUBase<M,X,Y>::rhs()
1540  {
1541  return *rhs_;
1542  }
1543 
1544  template<class M, class X, class Y>
1545  void OverlappingAssignerILUBase<M,X,Y>::resetIndexForNextDomain()
1546  {
1547  i=0;
1548  }
1549 
1550  template<typename S, typename T, typename A, int n>
1551  AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::AdditiveAdder(BlockVector<FieldVector<T,n>,A>& v_,
1553  OverlappingAssigner<S>& assigner_,
1554  const T& relax_)
1555  : v(&v_), x(&x_), assigner(&assigner_), relax(relax_)
1556  {}
1557 
1558  template<typename S, typename T, typename A, int n>
1559  void AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::operator()(const size_type& domainIndex)
1560  {
1561  // add the result of the local solve to the current update
1562  assigner->assignResult((*v)[domainIndex]);
1563  }
1564 
1565 
1566  template<typename S, typename T, typename A, int n>
1567  void AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::axpy()
1568  {
1569  // relax the update and add it to the current guess.
1570  x->axpy(relax,*v);
1571  }
1572 
1573 
1574  template<typename S, typename T, typename A, int n>
1575  MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >
1576  ::MultiplicativeAdder(BlockVector<FieldVector<T,n>,A>& v_,
1577  BlockVector<FieldVector<T,n>,A>& x_,
1578  OverlappingAssigner<S>& assigner_, const T& relax_)
1579  : x(&x_), assigner(&assigner_), relax(relax_)
1580  {
1582  }
1583 
1584 
1585  template<typename S,typename T, typename A, int n>
1586  void MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >::operator()(const size_type& domainIndex)
1587  {
1588  // add the result of the local solve to the current guess
1589  assigner->relaxResult(relax);
1590  assigner->assignResult((*x)[domainIndex]);
1591  }
1592 
1593 
1594  template<typename S,typename T, typename A, int n>
1595  void MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >::axpy()
1596  {
1597  // nothing to do, as the corrections already relaxed and added in operator()
1598  }
1599 
1600 
1602 }
1603 
1604 #endif
Implementation of the BCRSMatrix class.
This file implements a vector space as a tensor product of a given vector space. The number of compon...
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:414
A vector of blocks with memory management.
Definition: bvector.hh:254
size_type size() const
size method
Definition: densevector.hh:285
Iterator find(size_type i)
return iterator to given element or end()
Definition: densevector.hh:322
Exact subdomain solver using Dune::DynamicMatrix<T>::solve.
Definition: overlappingschwarz.hh:136
size_type capacity() const
Number of elements for which memory has been allocated.
Definition: dynvector.hh:81
A dense n x m matrix.
Definition: fmatrix.hh:67
vector space out of a tensor product of fields.
Definition: fvector.hh:92
Index Set Interface base class.
Definition: indexidset.hh:78
RowIterator begin()
Get iterator to first row.
Definition: matrix.hh:79
Initializer for SuperLU Matrices representing the subdomains.
Definition: overlappingschwarz.hh:43
D subdomain_vector
The vector type containing the subdomain to row index mapping.
Definition: overlappingschwarz.hh:46
Base class for matrix free definition of preconditioners.
Definition: preconditioner.hh:26
A constant iterator for the SLList.
Definition: sllist.hh:370
A single linked list.
Definition: sllist.hh:43
Sequential overlapping Schwarz preconditioner.
Definition: overlappingschwarz.hh:753
X::field_type field_type
The field type of the preconditioner.
Definition: overlappingschwarz.hh:781
void apply(X &v, const X &d)
Apply one step of the preconditioner to the system A(v)=d.
M matrix_type
The type of the matrix to precondition.
Definition: overlappingschwarz.hh:758
TM Mode
The mode (additive or multiplicative) of the Schwarz method.
Definition: overlappingschwarz.hh:776
X range_type
The range type of the preconditioner.
Definition: overlappingschwarz.hh:768
X domain_type
The domain type of the preconditioner.
Definition: overlappingschwarz.hh:763
@ category
The category the precondtioner is part of.
Definition: overlappingschwarz.hh:811
TD slu
The type for the subdomain solver in use.
Definition: overlappingschwarz.hh:804
virtual void pre(X &x, X &b)
Prepare the preconditioner.
Definition: overlappingschwarz.hh:849
virtual void post(X &x)
Postprocess the preconditioner.
Definition: overlappingschwarz.hh:867
std::vector< subdomain_type, typename TA::template rebind< subdomain_type >::other > subdomain_vector
The vector type containing the subdomain to row index mapping.
Definition: overlappingschwarz.hh:795
TA allocator
The allocator to use.
Definition: overlappingschwarz.hh:787
SLList< size_type, typename TA::template rebind< size_type >::other > subdomain_list
The type for the row to subdomain mapping.
Definition: overlappingschwarz.hh:798
std::vector< subdomain_list, typename TA::template rebind< subdomain_list >::other > rowtodomain_vector
The vector type containing the row index to subdomain mapping.
Definition: overlappingschwarz.hh:801
std::vector< slu, typename TA::template rebind< slu >::other > slu_vector
The vector type containing subdomain solvers.
Definition: overlappingschwarz.hh:807
matrix_type::size_type size_type
The return type of the size method.
Definition: overlappingschwarz.hh:784
std::set< size_type, std::less< size_type >, typename TA::template rebind< size_type >::other > subdomain_type
The type for the subdomain to row index mapping.
Definition: overlappingschwarz.hh:792
RealIterator< const B > const_iterator
iterator class for sequential access
Definition: basearray.hh:195
size_type N() const
number of blocks in the vector (are of size 1 here)
Definition: bvector.hh:218
iterator class for sequential access
Definition: basearray.hh:596
This file implements a dense matrix with dynamic numbers of rows and columns.
virtual void apply(X &v, const X &d)
Apply the precondtioner.
Definition: overlappingschwarz.hh:1229
SeqOverlappingSchwarz(const matrix_type &mat, const subdomain_vector &subDomains, field_type relaxationFactor=1, bool onTheFly_=true)
Construct the overlapping Schwarz method.
Definition: overlappingschwarz.hh:1058
SeqOverlappingSchwarz(const matrix_type &mat, const rowtodomain_vector &rowToDomain, field_type relaxationFactor=1, bool onTheFly_=true)
Definition: overlappingschwarz.hh:1011
DVVerbType dvverb(std::cout)
stream for very verbose output.
Definition: stdstreams.hh:94
Various local subdomain solvers based on ILU for SeqOverlappingSchwarz.
Dune namespace.
Definition: alignment.hh:14
Define general preconditioner interface.
Implements a singly linked list together with the necessary iterators.
Templates characterizing the type of a solver.
template meta program for choosing how to add the correction.
Definition: overlappingschwarz.hh:569
Tag that the tells the schwarz method to be additive.
Definition: overlappingschwarz.hh:116
Helper template meta program for application of overlapping schwarz.
Definition: overlappingschwarz.hh:602
Tag that tells the Schwarz method to be multiplicative.
Definition: overlappingschwarz.hh:122
Helper template meta program for application of overlapping schwarz.
Definition: overlappingschwarz.hh:666
Definition: overlappingschwarz.hh:1105
@ sequential
Category for sequential solvers.
Definition: solvercategory.hh:22
Tag that tells the Schwarz method to be multiplicative and symmetric.
Definition: overlappingschwarz.hh:129
Classes for using SuperLU with ISTL matrices.
Classes for using UMFPack with ISTL matrices.
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentional unused function parameters with.
Definition: unused.hh:18
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 16, 22:29, 2024)