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The Problem with Finite Element Software

Problem:
• There are many PDE software packages, each with a particular

set of features:
• IPARS: block structured, parallel, multiphysics.
• Alberta: simplicial, unstructured, bisection refinement.
• UG: unstructured, multi-element, red-green refinement, parallel.
• QuocMesh: Fast, on-the-fly structured grids.

• Using one framework, it might be
• either impossible to have a particular feature,
• or very inefficient in certain applications.

• Extension of the feature set is usually hard.

Reason:
Algorithms must be implemented on the basis of a particular
data structure
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Design Principles

Design Principles

Flexibility: Seperation of data structures and algorithms.

Efficiency: Generic programming techniques.

Legacy Code: Reuse existing finite element software.
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Design Principles

Flexibility
Seperate data structures and algorithms.

• The algorithm determins the data structure to operate on.

• Data structures are hidden under a common interface.

• Algorithms work only on that interface.

• Different implementations of the interface.

Mesh

InterfaceE.g. FE discretization

Algorithm

Structured grid

Unstructured simplicial grid

Unstructured multi−element grid

Incomplete 

Decomposition

Algebraic

Multigrid

Sparse

Matrix−Vector

Interface

Compressed Row Storage (CRS)

Block CRS

Sparse Block CRS
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Design Principles

Efficiency
Implementation with generic programming techniques.

algorithm

implementation

• Static Polymorphism → Compile-time
selection of data structures.

• Compiler generates code for each
(algorithm,data structure) combination.

• Allows interfaces with fine granularity.

• All optimizations apply, in particular
function inlining.

• see i.e. STL, Blitz++, MTL,. . .

• and Thesis of Gundram Berti (2000):
Concepts for grid based algorithms.
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Design Principles

Reuse existing finite element software.

Efficient integration of existing FE software, using interfaces and generic programming.

YaspGrid

User Code
Block−CRS

Interfaces

Implementations

and Legacy Code

Linear Algebra

Interface
Grid Interface

Sover Interface

Visualization

Interface

DUNE

SuperLU Pardiso

VTK Grape

Compressed

Row Storage

Algebraic

Multigrid

AmiraMesh

Alberta

UG
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The Development of DUNE

The Development of DUNE

• Modules

• Code is split into differnt
modules.

• Applications use only the
modules they need.

• Modules are sorted according to
level of maturaty.

• Everybody can provide his own
modules.

• Portability

• Open Development Process

• Free Software Licence

common

istlgrid ...

subgrid richards equation ...

disc fem hdf5 export

core modules

unstable and external modules

applications

Central contact point is http://www.dune-project.org/

Christian Engwer (IPVS, Stuttgart) DUNE February 29, 2008 8 / 28

http://www.dune-project.org/


The Development of DUNE

DUNE Core 1.0

Current stable version is 1.0, available since 20th december 2007.

dune-common: foundation classes,
infrastructure

dune-grid: grid interface,
quadrature rules,
visualization

dune-istl: (Iterative Solver Template
Library)
generic sparse matrix/vector
classes,
solvers (Krylov methods,
AMG, etc.)

common

istlgrid ...

subgrid richards equation ...

disc fem hdf5 export

core modules

unstable and external modules

applications
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The Development of DUNE

DUNE Developers
Thanks to my fellow developers

A project like this could not be possible without . . .

◮ the core developers
• Peter Bastian
• Markus Blatt
• Andreas Dedner
• Christian Engwer
• Robert Klöfkorn
• Mario Ohlberger
• Oliver Sander

◮ all the users and testers

◮ and many other contributers.
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Generic Programming Techniques

Generic Programming Techniques

1 Static Polymorphism

• Engine Concept (see STL)
• Curiously Recurring Template Pattern (Barton and Nackman)

2 Iterators

• Generic access to different data structures.

3 View Concept

• Access to different partitions of one data set.
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Generic Programming Techniques Static Polymorphism

Static Polymorphism
vs. Dynamic Polymorphism

Dynamic Polymorphism

• the “usual” polymorphism

• allows exchangeability at run
time

• impedes a variaty of
optimizations, e.g.

• inlining
• loop unrolling

• additional overhead

Static Polymorphism

• allows exchangeability only at
compile time

• allows all optimizations

• longer compile time

⇒ especially for fine grained interfaces with short functions
(≤ 25 FLOPS), static polymorphism is to be prefered.
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Generic Programming Techniques Static Polymorphism

Static Polymorphism

Engine Concept

• Used in the STL

• A certain interface is assumed

• Now language features to ensure a certain interface

• Weired errors if this interface is not fulfilled

Barton Nackman Trick

• Recursive template patterns shall ensure a given interface

• Only a trick to work around missing language features
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Generic Programming Techniques Iterators

Iterators

Iterators are a common concept in the STL.

• A container object owns the data.

• Iterators give access to this data.

• A 1-D ordering of the container is required.

• Iterators are a generalization of pointers.

• They allow algorithms to operate on very different containers.

see: Todd Veldhuizen, Techniques for scientific C++, 1999.
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Generic Programming Techniques View Concept

View Concept

• The container contents (“Data”) exist outside the container
objects.

• The containers are lightweight handles (“Views”) of the Data.

• Multiple containers can refer to the same data, but provide
different views.

• “View-Only” containers allow a clear seperation of resposibilities:
• wide use of const allows better optimizations.
• data modification only in very destinct places

⇒ allows an even wider range of data structures.

see: Todd Veldhuizen, Techniques for scientific C++, 1999.
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DUNE Grid Interface Grid

Grid

A formal specification of grids is required to enable an accurate
description of the grid interface.

+ +

Hierarchic Grid

Entity codim=0

Entity codim=1

Entity codim=2

Entity codim=3

• A (hierarchic) grid has a dimension d ,
a world dimension w and maximum
level J.

• A grid is a Container of entities
(geometrical/topological objects) of
different codimensions.
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DUNE Grid Interface Grid

Supports a wide range of Grids

structured
conforming non conforming

nested, 1D

red-green, bisektion manifolds

parallel data decomposition

periodic

mixed dimensions
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DUNE Grid Interface Interface

Grid Interface

Barton-Nackman Trick:
Used for all classes associated with a Grid.

View Model:
Read-only access to grid entities, consequent use of const.

• level view
• leaf view

Iterators:
Access to entities is only through iterators for a certain view.
⇒ Allows on-the-fly implementations.

Several instances of a grid with different dimension and
implementation can coexist in a single program.
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DUNE Grid Interface Entities

Entities

ν

ζ

TE

E

Ω̂

x

y

Mapping from Ω̂ into global coordinates.

E′

TE′

Ω̂cube

Position in father

E

TE

Ω̂
simplex

Entity E is defined by. . .

• Reference Element Ω̂
• Describes all topological information.
• Can be recursively constructed over

dimension.

• Transformation TE
• Maps from the reference element into

global coordinates.
• Provides Jacobian, its inverse and

tangential vectors.

Entity of Codimension 0 provides. . .

• subentity and father relations.

• intersections with neighbours and
boundary.
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DUNE Grid Interface Iterators

Iterators
Access different views of the grid

• LeafIterator<d>
iterates over codimension 0
leaf entities.

• LevelIterator<c,d>
iterates over codimension c
entities on a given level.

• HierarchicIterator<d>
iterate over all childs of a
codimension 0 entity.
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DUNE Grid Interface Iterators

Intersections

Ê

Ê′

Î

TI,E

TI,E′

Entity E

Entity E′

Intersection I

TE

TE′

• Grids may be non conforming.

• Entities can intersect with neighbors
and boundary.

• IntersectionsIterators give access to
intersections of an Entity in a given
view.

• IntersectionsIterators hold topological
and geometrical information.

• Two types, corresponding the two
major views:

• LeafIntersectionIterator
• LevelIntersectionIterator

• Note: Intersections are always of
codimension 1!
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DUNE Grid Interface Indices and Ids

Indices and Ids

• Allow association of FE computations data with subsets of entities.

• Subsets could be “vertices of level l”, “faces of leaf elements”, . . .

• Data should be stored in arrays for efficiency.

• Associate index/id with each entity.
Three types are used:
Leaf index: zero-starting, consecutive, non-persistent, accessible

on copies.
Used to store solution and stiffness matrix.

Level index: zero-starting, consecutive, non-persistent.
Used for geometric multigrid.

Globally unique id: persistent across grid modifications.
Used to transfer solution from one grid to another.
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DUNE Grid Interface Grid Modification

Grid Modification

Modification Methods:

• Global Refinement

• Local Refinement & Adaption

• Load Balancing

⇒ View-Only Concept

• Views offer access to data

• Data can only be modified in the primal container (the Grid)
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Linear Algebra Interface

Linear Algebra Interface
Iterative Solver Template Library

Matrix−Vector

Interface

generic kernels

for iterative

methods

Solver components

Situtation:

• There are already template libraries for linear
algebra: MTL/ITL

• Existing libraries cannot efficiently use (small)
structure of FE-Matrices

Interface:

• Solver components: Based on operator concept,
Krylov methods, (A)MG preconditioners

• Generic kernels: Triangular solves,
Gauss-Seidel step, ILU decomposition

• Matrix-Vector Interface: Support recursively
block structured matrices
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Linear Algebra Interface Expressing Structure in FE Matrices

Block Structure in FE Matrices

sparse block
matrix
blocks are
dense
blocks have
fixed size

blocks are 
dense

blocks have
variable size

blocks are
sparse

DG fixed p

DG hp version

diffusion-
reaction
systems

2x2 block
matrix

each block 
is sparse

Taylor-Hood
elements
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Linear Algebra Interface Vector-Matrix Interface

Vector-Matrix Interface

Vector
• Is a one-dimensional container

• Sequential access

• Random access

• Vector space operations: Addition,
scaling

• Scalar product

• Various norms

• Sizes

Matrix
• Is a two-dimensional container

• Sequential access using iterators

• Random access

• Organization is row-wise

• Mappings
y = y +Ax ; y = y +AT x ; y = y +AHx ;

• Solve, inverse, left multiplication

• Various norms

• Sizes

Engine Concept:
Solver use Kernels via Engine Concept.

Iterators:
Kernels operator on Iterators. This allows very different
Matrix/Vector Implementations.
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Linear Algebra Interface Vector-Matrix Interface

Example Definitions

• A vector containing 20 blocks where each block contains two
complex numbers using double for each component:

typedef FieldVector<complex<double>,2> MyBlock;
BlockVector<MyBlock> x(20);
x[3][1] = complex<double>(1,-1);

• A sparse matrix consisting of sparse matrices having scalar
entries:

typedef FieldMatrix<double,1,1> DenseBlock;
typedef BCRSMatrix<DenseBlock> SparseBlock;
typedef BCRSMatrix<SparseBlock> Matrix;
Matrix A(10,10,40,Matrix::row_wise);
... / / f i l l ma t r i x
A[1][1][3][4][0][0] = 3.14;
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Conclusions

Conclusions

Publication: P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O.
Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computin g.
Part I: Abstract Framework . Submitted to Computing.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, O.

Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computin g.

Part II: Implementation and Tests in DUNE . Submitted to Computing.

DUNE http://www.dune-project.org/

Distributed and Unified Numerics Environment
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Conclusions

Conclusions

• DUNE is based on the following principles:
• Flexibility through seperation of data structures and algorithms.
• Efficiency through Generic Programming Techniques.
• Reuse of existing codes.

• Free and Open Software.

• Offers flexibility with hardly any performance penalty.
• Current plans:

• Constant improvements of the core modules.
• New (unified) discretization module.

DUNE http://www.dune-project.org/

Distributed and Unified Numerics Environment
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Performance Evaluation

Performance of the Grid Interface

• Consider Run-time for computing FE interpolation error for
polynomial degree 1 and quadrature order 2.

• Same algorithm runs on YaspGrid and UGGrid

Grid d Type Elements Time [s]

UGGrid 2 simplex 131072 0.49
UGGrid 2 cube 65536 0.19
YaspGrid 2 cube 65536 0.09
UGGrid 3 cube 32768 0.19
YaspGrid 3 cube 32768 0.12

• YaspGrid is on-the-fly compared to UGGrid.

• Basis functions are not cached.
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Performance Evaluation

Performance Linear Algebra

• Matrix-Vector performance
• Pentium 4 Mobile 2.4 GHz, Compiler: GNU C++ 4.0
• Stream benchmark for x = y + αz is 1084 MB/s
• Scalar product of two vectors

N 500 5000 50000 500000 5000000
MFLOPS 896 775 167 160 164

• daxpy operation y = y + αx , 1200 MB/s transfer rate for large N

N 500 5000 50000 500000 5000000
MFLOPS 936 910 108 103 107

• Damped Gauß-Seidel solver
• 5-point stencil on 1000 × 1000 grid
• Comparison generic implementation in ISTL with specialized C

implementation in AMGLIB
AMGLIB ISTL

Time per iteration [s] 0.17 0.18
• Corresponds to about 150 MFLOPS
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Parallel Grid Interface Parallel Data Decomposition

Parallel Data Decomposition

• Grid is mapped to P = {0, . . . , P − 1}.

• Each Entities is present on one or more
processors.

• Each Entities is associated to one “partition
type”.

• partition types:
interior Nonoverlapping decomposition.
overlap Arbitrary size.
ghost Rest.
border Boundary of interior. (codimension>0)
front Boundary of interior+overlap. (codimension>0)

• Allows implementation of overlapping and
nonoverlapping Domain Decomposition
methods.
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