
The Iterative Solver Template Library

Markus Blatt and Peter Bastian

Interdisciplinary Centre for Scientific Computing (IWR), University Heidelberg, Im
Neuenheimer Feld 368, 69120 Heidelberg, Germany

Markus.Blatt@iwr.uni-heidelberg.de, Peter.Bastian@iwr.uni-heidelberg.de
http://www.dune-project.org

Abstract. The numerical solution of partial differential equations fre-
quently requires the solution of large and sparse linear systems. Using
generic programming techniques like in C++ one can create solver li-
braries that allow efficient realization of “fine grained interfaces”, i. e.
with functions consisting only of a few lines, like access to individual
matrix entries. This prevents code replication and allows programmers
to work more efficiently.

In this paper we present the “Iterative Solver Template Library” (ISTL)
which is part of the “Distributed and Unified Numerics Environment”
(DUNE). It applies generic programming in C++ to the domain of iter-
ative solvers of linear systems stemming from finite element discretiza-
tions. Those discretizations exhibit a lot of structure. Our matrix and
vector interface supports a block recursive structure. I. E. each sparse
matrix entry can be a sparse or a small dense matrix itself. Based on
this interface we present efficient solvers that use the recursive block
structure via template metaprogramming.

1 Introduction

The numerical solution of partial differential equations (PDEs) frequently re-
quires solving of large and sparse linear systems. Naturally, there are many
libraries available for doing sparse matrix/vector computations, see [7] for a
comprehensive list.

The widely availably Basic Linear Algebra Subprograms (BLAS) standard
has been extended to cover also sparse matrices [5]. The standard uses procedural
programming style and offers only a FORTRAN and C interface. “Fine grained”
interfaces, meaning that functions consisting only of a few lines of code, such as
access to individual matrix elements, are not slow compared to big functions,
are not possible in this setup.

Generic programming techniqes in C++ offer the possibility to combine flex-
ibility and reuse (“efficiency of the programmer”) with fast execution (“efficieny
of the program”). This has been demonstrated with the Standard Template
Library (STL), [15] or the Blitz++ library [6]. For an introduction to generic
programming for scientific computing see [2, 16]. Application of these ideas to
matrix/vector operations is available with the Matrix Template Library (MTL),

2

[12, 14] and to iterative solvers for linear systems with the Iterative Template
Library (ITL), [11].

In contrast to these libraries the “Iterative Solver Template Library” (ISTL),
which is part of the “Distributed and Unified Numerics Environment” (DUNE),
[3, 8], is designed specifically for linear systems stemming from finite element
discretizations. The sparse matrices representing these linear systems exhibit a
lot of structure, e. g.:

– Certain discretizations for systems of PDEs or higher order methods result
in matrices where individual entries are replaced by small blocks, say of size
2×2 or 4×4, see Fig. 1(a). Dense blocks of different sizes e. g. arise in hp Dis-
continuous Galerkin discretization methods, see Fig. 1(b). Straightforward
iterative methods solve these small blocks exactly, see e. g. [4].

– Equation-wise ordering for systems results in matrices having an n×n block
structure where n corresponds to the number of variables in the PDE and the
blocks themselves are large. As an example we mention the Stokes system,
see Fig. 1(d). Iterative solvers such as the SIMPLE or Uzawa algorithm use
this structure.

– Other discretizations, e. g. those of reaction/diffusion systems, produce sparse
matrices whose blocks are sparse matrices of small dense blocks, see 1(c).

– Other structures that can be exploited are the level structure arising from
hierarchic meshes, a p-hierarchic structure (e. g. decomposition in linear and
quadratic part), geometric structure from decomposition in subdomains or
topological structure where unknowns are associated with nodes, edges, faces
or elements of a mesh.

This structure is typically known at compile-time and therefore should be ex-
ploited to produce efficient code. Moreover, block structuredness is recursive,
i. e. matrices are build from blocks which can themselves be build from blocks.

Fig. 1. Block structure of matrices arising in the finite element method

In the next section we describe the matrix and vector interface that represents
this recursive block structure via templates. In Sect. 3 we show how to exploit
the block structure using template metaprogramming at compile time. Finally
we sketch the high level iterative solver interface in Sec. 4.

3

2 Matrix and Vector Interface

The interface of our matrices are designed according to what they represent from
a mathematical point of view. The vector classes are representations of vector
spaces while the matrix classes are representations of linear maps between two
vector spaces.

2.1 Vector Spaces

We assume the reader is familiar with the concept of vector spaces. Essentially
a vector space over a field K is a set V of elements (called vectors) along with
vector addition + : V 7→ V and scalar multiplication · : K × V 7→ V with the
well known properties. See your favourite textbook for details, e. g. [10].

For our application the following way of construction plays an important
role: Let Vi, i = 1, 2, . . . , n, be a normed vector spaces of dimension ni with a
scalarproduct, then the n-nary cartesian product

V := V1 × V2 × . . . × Vk = {(v1, v2, . . . , vn)|v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn} (1)

is again a normed vector space of dimension
∑n

i=1
ni with the canonical norm

and scalarproduct.

Treating K as a vector space itself we can apply this construction recursively
starting from the field K.

While for a mathematician every finite dimensional vector space is isomorphic
to R

k for an appropriate k for our application it is important to know how the
vector space was constructed recursively by the procedure described in (1).

Vector Classes. To express the construnction of the vector space by n-nary
products of other vector spaces ISTL provides the following classes:

FieldVector. The template<class K, int n> FieldVector<K,n> class template is
used to represent a vector space V = K

n where the field is given by the type
K. K may be double, float, complex<double> or any other numeric type. The
dimension given by the template parameter n is assumed to be small.

Example: Use FieldVector<double,2> for vectors with a fixed dimension 2.

BlockVector. The template<class B> BlockVector class template builds a vec-
tor space V = Bn where the “block type” B is given by the template parameter
B. B may be any other class implementing the vector interface. The number of
blocks n is given at run-time.

Example: BlockVector<FieldVector<double,2> > can be used to define vectors
of variable size where each block in turn consists of two double values.

4

VariableBlockVector. The template<class B> VariableBlockVector class can
be used to construct a vector space having a two-level block structure of the form
V = Bn1 × Bn2 × . . . × Bnm , i.e. it consists of m blocks i = 1, . . . , m and each
block in turn consists of ni blocks given by the type B. In principle this structure
could be built also with the previous classes but the implementation here is more
efficient. It allocates memory in one big array for all components. For certain
operations it is more efficient to interpret the vector space as V = BN , where
N =

∑m

i=1
ni.

Vectors are containers. Vectors are containers over the base type K or B

in the sense of the Standard Template Library. Random access is provided via
operator[](int i) where the indices are in the range 0, . . . , n−1 with the number
of blocks n given by the N method. Here is a code fragment for illustration:

typedef Dune :: FieldVector <std::complex <double >,2> BType;

Dune ::BlockVector <BType > v(20);

v[1] = 3.14;

v[3][0] = 2.56;

v[3][1] = std::complex <double >(1,-1);

Note how one operator[]() is used for each level of block recursion.
Sequential access to container elements is provided via iterators. The Iterator

class provides read/write access while the ConstIterator provides read-only ac-
cess. The type names are accessed via the ::-operator from the scope of the
vector class.

A uniform naming scheme enables writing of generic algorithms. See Table 1
for the types provided in the scope of any vector class.

Table 1. Types of vector classes

expression return type

field type The type of the field of the repesented vector space, e. g.
double.

block type The type of the blocks vector.
size type The type used for the index access and size operations.
block level The block level of the vector, e. g. 1 for FieldVector, 2 for

BlockVector<FieldVector<K>,n>.
Iterator The type of the iterator.
ConstIterator The type of the immutable iterator.

2.2 Linear maps

For a matrix representing a linear map (or homomorphism) A : V 7→ W from
vector space V to vector space W the recursive block structure of the matrix
rows and columns immediatly follows from the recursive block structure of the

5

vectors representing the domain and range of the mapping, respectively. As a
natural consequence we designed the following matrix classes:

Matrix classes. Using the construction in (1) the structure of our vector spaces
carries over to linear maps in a natural way.

FieldMatrix. the template<class K, int n> FieldMatrix<K,n,m> class template
is used to represent a linear map M : V1 → V2 where V1 = K

n and V2 = K
m

are vector spaces over the field given by template parameter K. K may be double,
float, complex<double> or any other numeric type. The dimensions of the two
vector spaces given by the template parameters n and m are assumed to be small.
The matrix is stored as a dense matrix. Example: Use FieldMatrix<double,2,3>

to define a linear map from a vector space over doubles with dimension 2 to one
with dimension 3.

BCRSMatrix. The template<class B> BCRSMatrix class template represents a
sparse matrix where the “block type” B is given by the template parameter B.
B may be any other class implementing the matrix interface. The matrix class
uses a compressed row storage scheme.

VariableBCRSMatrix. The template<class B> VariableBCRSMatrix class can
be used to construct a linear map between two vector spaces having a two-level
block structure V = Bn1 ×Bn2 × . . .×Bnm and W = Bm1 ×Bm2 × . . .×Bmk .
Both are represented by the template<class B> VariableBlockVector class,
see 2.1. This is not implemented yet.

Matrices are containers of containers. Matrices are containers over the ma-
trix rows. The matrix rows are containers over the type K or B in the sense of the
Standard Template Library. Random access is provided via operator[](int i) on
the matrix to the matrix rows and on the matrix rows to the matrix columns (if
present). Note that except for FieldMatrix, which is a dense matrix, operator[]
on the matrix row triggers a binary search for the column.

For sequential access use RowIterator and ColIterator for read/write ac-
cess or ConstRowIterator and ConstColIterator for readonly access to rows and
columns, respectively. Here is a small example that prints the sparsity pattern
of a matrix of type M:

typedef typename M:: ConstRowIterator RowI;

typedef typename M:: ConstColIterator ColI;

for(RowI row = matrix.begin(); row != matrix.end(); ++row){

std::cout << "row "<<row.index()<<": "

for(ColI col = row ->begin(); col != row ->end(); ++col)

std::cout <<col.index()<<" ";

std::cout <<std:: endl;

}

As with the vector interface a uniform naming convention enables generic
algorithms. See Table 2 for the most important names.

6

Table 2. Type names in the matrix classes

expression return type

field type The type of the field of the vector spaces we map from and
to

block type Th type representing the matrix components
row type The container type of the rows.
size type The type used for index access and size operations
block level The block recursion level, e. g. 1 for FieldMatrix and 2 for

BlockVector<FieldVector<K>,m,n>.
RowIterator The type of the mutable iterator over the rows
ConstRowIterator dito, but immutable
ColIterator The type of the mutable iterator over columns of a row.
ConstColIterator dito, but immutable

3 Block Recursive Algorithms

3.1 Block Recursion

The basic feature of the concept described by the matrix and vector classes, is
their recursive block structure. Let A be a matrix with blocklevel l > 1 then each
block Aij can be treated as (or actually is) a matrix itself. This recursiveness can
be exploited in generic algorithm using the defined block_level of the matrix
and vector classes.

Most preconditioner can be modified to honor this recursive structure for a
specific number of block levels k. They then work as normal on the offdiagonal
blocks, treating them as traditional matrix entries. For the diagonal values a
special procedure applies: If k > 1 the diagonal is treated as a matrix itself and
the preconditioner is applied recursively on the matrix representing the diagonal
value D = Aii with blocklevel k − 1. For the case that k = 1 the diagonal is
treated as a matrix entry resulting in a linear solve or an identity operation
depending on the algorithm.

3.2 Iterative Solver Kernels

In the formulation of most iterative methods upper and lower triangular and
diagonal solves play an important role. ISTL provides block recursive versions of
these generic building blocks using template metaprogramming, see Table 3 for a
listing of these methods. In the table matrix A is decomposed into A = L+D+U ,
where L is a strictly lower block triangular, D is a block diagonal and U is a
strictly upper block triangular matrix. An arbitrary block recursion level can be
given by an additional parameter. If this parameter is omitted it defaults to 1.

Using the same block recursive template metaprogramming technique, ker-
nels for the defect formulations of simple iterative solvers are available in ISTL.
The number of block recursion levels can again be given as an additional argu-
ment. See the second part of Table 3 for a list of these kernels.

7

Table 3. Iterative Solver Kernels

function computation

block triangular and block diagonal solves

bltsolve(A,v,d) v = (L + D)−1d

bltsolve(A,v,d,ω) v = ω(L + D)−1d

ubltsolve(A,v,d) v = L−1d

ubltsolve(A,v,d,ω) v = ωL−1d

butsolve(A,v,d) v = (D + U)−1d

butsolve(A,v,d,ω) v = ω(D + U)−1d

ubutsolve(A,v,d) v = U−1d

ubutsolve(A,v,d,ω) v = ωU−1d

bdsolve(A,v,d) v = D−1d

bdsolve(A,v,d,ω) v = ωD−1d

iterative solves

dbjac(A,x,b,ω) x = x + ωD−1(b − Ax)
dbgs(A,x,b,ω) x = x + ω(L + D)−1(b − Ax)

bsorf(A,x,b,ω) xk+1

i = xk
i + ωA−1

ii

"

bi −

P

j<i

Aijx
k+1

j −

P

j≥i

Aijx
k
j

#

bsorb(A,x,b,ω) xk+1

i = xk
i + ωA−1

ii

"

bi −

P

j≤i

Aijx
k
j −

P

j>i

Aijx
k+1

j

#

4 Solver Interface

The solvers in ISTL do not work on matrices directly. Instead we use an abstract
Operator concept. Thus we can even model and solve linear maps that are not
stored as matrices (e. g. on the fly computed linear operators).

4.1 Operators

The base class template<class X, class Y> LinearOperator represents linear maps.
The template parameter X is the type of the domain and Y is the type of the
range of the operator. A linear operator provides the methods apply(const X& x

, Y& y) and apply applyscaledadd(const X& x, Y& y) performing the operations
y = A(x) and y = y+αA(x), respectively. The subclass template<class M, class

X, class Y> AssembledLinearOperator represents linear operators that have a
matrix representation. Convertion from any matrix into a linear operator is done
by the class template<class M, class X, class Y> MatrixAdapter.

4.2 Scalarproducts

For convergence tests and the stopping criteria Krylow methods need to com-
pute scalar products and norms on the underlying vector spaces. The base class
template<class X> Scalarproduct provides methods field_type dot(const X&

x, const X&y) and double norm(const X& x) to calculate these. For sequential
programs use template<class X> SeqScalarProduct which simply maps this to
functions of the vector implementations.

8

4.3 Preconditioners

The template<class X, class Y> Preconditioner provides the abstract base class
for all precondioners in ISTL. The method void pre(X& x, Y& b) has to be called
before applying the preconditioner. Here x is the left hand side and b is the right
hand side of the operator equation. The method may, e. g. scale the system,
allocate memory or compute an (I)LU decomposition. The method void apply(

X& v, const Y&) applies one step of the preconditioner to the system A(v) = d.
Here b should contain the current defect and v should be 0. Upon exit of the
method v contains the computed update to the current guess, i. e. v = M−1

d

where M is the approximate inverse of the operator A characterizing the precon-
ditioner. The method void post(X& x) should be called after all computations
to give the precondtioner the chance to clean allocated resources.

See Table 4 for a list of available preconditioner. They have the template

Table 4. Preconditioners

class implements s/p recursive

SeqJac Jacobi method s x
SeqSOR successive overrelaxation (SOR) s x
SeqSSOR symmetric SSOR s x
SeqILU incomplete LU decomposition (ILU) s
SeqILUN ILU decpmposition of order N s
Pamg::AMG algebraic multigrid method s/p
BlockPreconditioner Additive overlapping Schwarz p

parameters M representing the type of the matrix they work on, X representing
the type of the domain, Y representing the type of the range of the linear system.
The block recursive preconditioner are marked with “x” in the last column. For
them the recursion depth is specified via an additional template parameter int

l. The column labeled “s/p” specifies whether they support sequential and/or
parallel mode.

4.4 Solvers

All solvers are subclasses of the abstract base class template<class X, class

Y> InverseOperator representing the inverse of an operator from the domain
of type X to the range of type Y. The actual solve of the system A(x) = b is
done in the method void apply(X& x, Y& b, InverseOperatorResult& r). In the
InverseOperatorResult some statistics about the solution process, e. g. iteration
count, achieved defect reduction, etc., are stored. All solvers only use methods
of instances of LinearOperator, ScalarProduct and Preconditioner. These are
provided in the constructor.

See Table 5 for a list of available solvers. All solvers are template classes with
a template parameter X providing them with the vector implementation used.

9

Table 5. ISTL Solvers

class implements

LoopSolver only apply precoditioner multiple time
GradientSolver preconditioned radient method
CGSolver preconditioned conjugate gradient method
BiCGStab preconditioned biconjugate gradient stabilized method

4.5 Parallel Solvers

Instead of using parallel data structures (matrices and vectors) that (implicitly)
know the data distribution and communication patterns like in PETSc [13, 1] we
decided to decouple the parallelization from the data structures used. Basically
we provide an abstract consistency model on top of our linear algebra. This
is hidden in the parallel implementations of the interfaces of LinearOperator

, Scalarproduct and Preconditioner, which assure consistency of the data (by
communication) for the InverseOperator implementation. Therefore the same
Krylow method algorithms work in parallel and sequential mode.

Based on the idea proposed in [9] we implemented parallel overlapping Schwarz
preconditioners with inexact (sequential) subdomain solvers and a parallel al-
gebraic multigrid preconditioner together with appropriate implementations of
LinearOperator and Scalarproduct. Nonoverlapping versions are currently being
worked on.

Note that using this approach it easy two switch form the currently im-
plemented MPI version to new parallel programming paradigms that might be
needed on new platforms.

4.6 Performance Evaluation

We evaluated the performance of our implementation on a Petium 4 Mobile 2.4
GHz with a measured memory bandwith of 1084 MB/s for the daypy operation
(x = y + αz) in Tables 6. The code was comiled with the GNU C++ compiler

Table 6. Performance Tests

(a) scalar product

N 500 5000 50000 500000 5000000

MFLOPS 896 775 167 160 164

(b) daxpy operation y = y + αx

500 5000 50000 500000 5000000

936 910 108 103 107

(c) Matrix-vector product, 5-point stencil, b: block size

N, b 100,1 10000,1 1000000,1 1000000,2 1000000,3

MFLOPS 388 140 136 230 260

(d) Damped Gauß-
Seidel

C ISTL

time / it. [s] 0.17 0.18

version 4.0 with -O3 optimization. In the tables N is the number of unknown

10

blocks (equals the number of unknows for the scalar cases in Tables 6(a), 6(b),
6(d)). The performance for the scalarproduct, see Table 6(a), and the daxpy
operation, see Table 6(b) is nearly optimal and for large N the limiting factor is
clearly the memory bandwith. Table 6(c) shows that we take advantage of cache
reusage for matrices of dense blocks with block size b > 1. In Table 6(d) we
compared the generic implementation of the Gauss Seidel solver in ISTL with a
specialized C implementation. The measured times per iteration show that there
is now lack of computational efficiency due to the generic implementation.

References

1. S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

2. J. J. Barton and L. R. Nackman. Scientific and Engineering C++. Addison-Wesley,
1994.

3. P. Bastian, M. Droske, C. Engwer, R. Klöfkorn, T. Neubauer, M. Ohlberger, and
M. Rumpf. Towards a unified framework for scientific computing. In R. Kornhu-
ber, R. Hoppe, J. Priaux, O. Widlund O. Pironneau, and J. Xu, editors, Domain

Decomposition Methods in Science and Engineering, volume 40 of LNCSE, pages
167–174. Springer-Verlag, 2005.

4. P. Bastian and R. Helmig. Efficient fully-coupled solution techniques for two-phase
flow in porous media. Parallel multigrid solution and large scale computations. Adv.

Water Res., 23:199–216, 1999.
5. BLAST Forum. Basic linear algebra subprograms technical (BLAST) forum stan-

dard, 2001. http://www.netlib.org/blas/blast-forum/.
6. Blitz++. http://www.oonumerics.org/blitz/.
7. J. Dongarra. List of freely available software for linear algebra on the web, 2006.

http://netlib.org/utk/people/JackDongarra/la-sw.html.
8. DUNE. http://www.dune-project.org/.
9. G. Haase, U. Langer, and A. Meyer. The approximate dirichlet domain decompo-

sition method. part i: An algebraic approach. Computing, 47:137–151, 1991.
10. J. Hefferson. Linear algebra, May 2006. http://joshua.amcvt.edu/.
11. Iterative template library. http://www.osl.iu.edu/research/itl/.
12. Matrix template library. http://www.osl.iu.edu/research/mtl/.
13. PETSc. http://www.mcs.anl.gov/petsc/.
14. J. Siek and A. Lumsdaine. A modern framework for portable high-performance

numerical linear algebra. In H. P. Langtangen, A. M. Bruaset, and E. Quak, editors,
Advances in Software Tools for Scientific Computing, volume 10 of LNCSE, pages
1–56. Springer-Verlag, 2000.

15. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1997.
16. T. Veldhuizen. Techniques for scientific C++. Technical report, Indiana University,

1999. Computer Science Department.

