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The Dilemma of Finite Element Software

There are many PDE software packages, each with a
particular set of features:

@ UG: unstructured, multi-element, red-green refinement, parallel
@ Alberta: unstructured, simplicial, bisection refinement

@ FEAST: block-structured, parallel

@ Many more: DiffPack, DEAL, IPARS, libMesh++, ...

Using one package it may be

@ either impossible to have a certain feature
@ or very 1nefficient in certain applications

Extension of the feature set is usually very difficult

Reason: Algorithms are implemented on the basis of
a particular grid data structure.




Design Concepts

The three DUNE design concepts:

Flexibility: Separate data structures and algorithms

Modularity: Maintainability and software reuse

Efficiency: Low overhead




Concept I: Flexibility

Separate data structure and algorithms

@ Determine what algorithms require from a data structure
to operate efficiently ("abstract interface')

@ Formulate algorithms based in this interface

@ Provide different implementations of the interface
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Concept II: Modularity

Modularity and reuse of existing PDE software
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(Your contribution is welcome!)




Concept III: Efficiency

Implementation with generic programming techniques

@ Compile-time selection of data structures
(static polymorphism)
@ Compiler generates code for each
algorithm / data structure combination
o All optimizations apply, in particular inlining
@ Allows interfaces with fine granularity

grid implementation




Efficiency

Concept 111
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Scope of the Grid Interface
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Formal Definition of a Grid

Grids 1in the DUNE sense are hierarchical!

A hierarchical grid consists of three things:

@ A set of entity complexes
E=A{Fy,...,E}
@ A set of geometric realizations
M ={My,..., M}

@ A set of father relations

F=A{Fp,..., Fp_1}




Entity Complexes and Geometric Realizations

@ Entity complex: set system of entities, topological information

@ Reference elements: classify entities

@ Geometric realization: map from the RE into Euclidean space




Father Relation

(Eit1, Mitq)

(Ei, M;)

Hierarchical grid Leaf grid

@ Connect two level grids with a father relation
@ Only element father relation appears in the interface

@ [eaf entities constitute the leaf grid
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Intersections

@ An d-1 dimensional point set
shared by two elements.

@ Described by transformations
e from a reference element

@ Arbitrary nonconforming
e intersections can be handled.

@ [_eaf- and level-wise intersections

@ Intersections with the domain
e boundary and the processor boundary




Parallel Data Decomposition

@ Grid is mappedto P ={0,...,P —1}.

@ E=U,p
@ 7, : E|p — “partition type”.
@ For codimension 0 there are three partition

types:
@ Interior: Nonoverlapping decomposition.
@ overlap: Arbitrary size.
@ ghost: Rest.

@ For codimension > 0 there are two additional

types:
@ border: Boundary of interior.
@ front: Boundary of interior+overlap.

E|, possibly overlapping.

@ Allows implementation of overlapping and
nonoverlapping DD methods.
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Index Sets

@ Grid and data are totally decoupled
@ (Grid entities only provide indices

@ Level index: consecutive, starting from zero for all entities
of a given dimension on a given level

— index arrays

@ Leaf index: consecutive, starting from zero for all entities
of a given dimension on the leaf grid

— index arrays
@ Persistent index: nonconsecutive, does not change
during grid modifications (refinement / load balancing)

— index associative arrays




Implementation

@ Mathematical definition translates directly into C++ classes
@ Implementations using wrapper and engine classes

@ Access to entities by STL-style iterators:
Levellterator, Leaflterator, HierarchicIterator,
IntersectionlIterator

@ Arbitrary sets of grids can coexist in the same application

@ Currently available implementations:
AlbertaGrid, ALUGrid, OneDGrid, SGrid, UGGrid, YaspGrid

@ GNU AutoTools build system
@ Runs on most flavours of Unix

@ Licence: LGPL + linking exception

@ Surprisingly easy to use!




Code Example: Grid Creation

Create a structured grid

const int dim =3;

typedef Dune :: SGrid < dim , dim > GridType;
Dune :: FieldVector < int , dim > N (3);
Dune :: FieldVector < GridType :: ctype , dim > L (-1.0);
Dune :: FieldVector < GridType :: ctype , dim > H ( 1.0);
GridType grid (N, L, H);
Create a UGGrid from an AmiraMesh file
const int dim =3;
typedef Dune :: UGGrid < dim > GridType;
GridType grid;
Dune :: AmiraMeshReader<GridType>::read(grid, “filename”);

Under discussion: interface for unstructured grid creation




Code Example: Grid Traversal

Iterate over all elements on the leaf grid

typedef GridType :: Codim <0>:: Leaflterator ElementlLeaflterator;

for ( ElementlLeaflIterator it = grid . template leafbegin <0>();

it !'= grid . template leafend <0>(),; ++it )
{
std :: cout << " wvisiting element which is a " << it -> type ()
<< std :: endl ;

Iterate over all vertices on the leaf grid
typedef GridType :: Codim <dim> :: Leaflterator VertexLeaflterator;

for ( VertexLeaflIterator it = grid . template leafbegin <dim> () ;
it !'= grid . template leafend <dim>(); ++it )

std :: cout << " wvisiting vertex at " << 1t -> geometry () [0]
<< std :: endl;




Code Example: Quadrature

Integrate a function f over an element *it

Dune :: GeometryType gt = it - > type ();
const Dune :: QuadratureRule < double , dim >&
rule = Dune :: QuadratureRules < double , dim >:: rule ( gt , p );
double result =0;
for ( int 1 = 0; 1 < rule.size(); 1i++)
{
FieldVector<double, dim>
globalPosition = 1t —-> geometry (). global (rule[i] . position ())
double fval = f (globalPosition);
double weight = rule[i] . weight ();
double detjac = it->geometry (). integrationElement (rulel[i].position());

result += fval * weight * detjac ;




Linear Algebra: dune-istl

@ There are already template libraries for linear
algebra: MTL/ITL

Solver components

| @ Existing libraries cannot efficiently use
generic kernels (small) structure of FE-Matrices
E;:Leﬁg”e @ Solver components: Based on operator
concept, Krylov methods, (A)MG
l preconditioners
Matrix-Vector @ Generic kernels: Triangular solves,
Interface GauB-Seidel step, ILU decomposition

\ @ Matrix-Vector Interface: Support recursively
block structured matrices

/

@ Various implementations of the interface are
available

dune-istl 1s completely independent of dune-grid!




Block Structure in FE Matrices
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Example Definitions

@ A vector containing 20 blocks where each block contains two
complex numbers using double for each component:

typedef FieldVector<complex<double>, 2> MyBlock;
BlockVector<MyBlock> x(20) ;
X[3][1] = complex<double>(1l,-1);

@ A sparse matrix consisting of sparse matrices having scalar
entries:

typedef FieldMatrix<double,1l, 1> DenseBlock;
typedef BCRSMatrix<DenseBlock> SparseBlock;
typedef BCRSMatrix<SparseBlock> Matrix;
Matrix A(10,10,40,Matrix: :row_wilse) ;

/7 fill matrix
A[L1][1][3][4][0][0] = 3.14;




Vector and Matrix Interface

Mainly taken from sparse BLAS

@ Vector @ Matrix
@ Is a one-dimensional @ Is a two-dimensional
container container
@ Sequential access @ Sequential access using
@ Random access iterators
@ Vector space operations: @ Random access
Addition, scaling @ Organization is row-wise
@ Scalar product @ Mappings y =y + Ax;y =
@ Various norms y+ATx;y=y+ Ax;
@ Sizes @ Solve, inverse, left

multiplication
@ Various norms
@ Sizes




Code Example: Block Gaul3-Seidel

for (int i=0; i<x->size(); 1i++) {
VectorBlock r, v;

typedef MatrixType::row_type RowType;
const RowType& row = matrix[i];

typedef typename RowType::Constlterator ColumnlIterator;

r = rhs[i];

for (ColumnlIterator clt=row.begin(); clt!=row.end(); ++cIlIt)
// r_i —= A_13 X_7J

cIlt->mmv(x[cIt.index ()], r);

// Compute v = A_{i,1}"{-1} r[i]
mat[1][1] .solve (v, r);

// Add correction
X[1] += v;




Example: Poisson Problem
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Example: Neuron Grid

@ Dendritic tree of L5 B pyramidal neuron (reconstruction by
Christiaan de Kock, MPIMF, Heidelberg)

@ NeuronGrid simulator (Stefan Lang, Olaf Ippisch)
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Example: Parallel Computing

Density-driven flow (P. Bastian)

@ cell-centered finite volume scheme

@ matrix-free implementation

@ YaspGrid, 8e8 cells, 384 processors

@ 9000 timesteps, 3 days running time
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Example: Multidimensional Coupling

@ Couple 3d linear elasticity with Cosserat rods
@ Left: 1 UGGrid, 1 OneDGrid

@ Right: 5 UGGrids, 4 OneDGrids




Example: dune-subgrid

(C. Griser, S. Prohaska, Z. Ritter, O. Sander.)

@ Axial compression of 9mm section of human distal radius
@ Subgrid of uniform grid (YaspGrid)
@ Uniform grid: 449x422x110, Subgrid: ca. 4.5e6 elements (22%)

@ Geometric multigrid with CFE coarse grid spaces




Further Information

@ P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kl6fkorn, M. Ohlberger,
and O. Sander, 'A Generic Grid Interface for Parallel and Adaptive
Scientific Computing. Part |: Abstract Framework', Matheon Preprint 403,
submitted to "Computing’

@ P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kl6fkorn, R. Kornhuber,
M. Ohlberger, and O. Sander, "A Generic Grid Interface for Parallel
and Adaptive Scientific Computing. Part I: Implementation and Tests in DUNE',
Matheon Preprint 404, submitted to Computing'

http://www.dune-project.org
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