The Distributed and Unified Numerics Environment
(DUNE)

Oliver Sander, Freie Universitiat Berlin
DFG Research Center MATHEON

joint work with: Peter Bastian, Markus Blatt, Andreas Dedner,
Christian Engwer, Robert Klofkorn, Mario Ohlberger

24.1.2008, TU Dresden

DFG research center matheon Freie Universitidt "_;fi‘- i)L
mathematics for key technologies =2

The Dilemma of Finite Element Software

There are many PDE software packages, each with a
particular set of features:

@ UG: unstructured, multi-element, red-green refinement, parallel
@ Alberta: unstructured, simplicial, bisection refinement

@ FEAST: block-structured, parallel

@ Many more: DiffPack, DEAL, IPARS, libMesh++, ...

Using one package it may be

@ either impossible to have a certain feature
@ or very 1nefficient in certain applications

Extension of the feature set is usually very difficult

Reason: Algorithms are implemented on the basis of
a particular grid data structure.

Design Concepts

The three DUNE design concepts:

Flexibility: Separate data structures and algorithms

Modularity: Maintainability and software reuse

Efficiency: Low overhead

Concept I: Flexibility

Separate data structure and algorithms

@ Determine what algorithms require from a data structure
to operate efficiently ("abstract interface')

@ Formulate algorithms based in this interface

@ Provide different implementations of the interface

Structured grid
. Mesh /
Algorithm

E.g. FE discretization Interface Unstructured simplicial grid

(IF)

Unstructured multi-element grid

Compressed Row Storage (CRS)
Incomplete /
Decomposition Sparse
Matrix-Vector|—— Block CRS
Algebraic - .| Interface
Multigrid B Sparse Block CRS

Concept II: Modularity

Modularity and reuse of existing PDE software

dune-grid-howto

dune-dd

dune-disc \\\\

dune-fem

[,

dune-subgrid

NeuronGr

dune-grid

UG

dune-istl

id jrffff
Albertal |ALU dune-common

(Your contribution is welcome!)

Concept III: Efficiency

Implementation with generic programming techniques

@ Compile-time selection of data structures
(static polymorphism)
@ Compiler generates code for each
algorithm / data structure combination
o All optimizations apply, in particular inlining
@ Allows interfaces with fine granularity

grid implementation

Efficiency

Concept 111

ALUGrid direct vs. ALUGrid through DUNE

compressible Euler equations

adapt. total

evolve

flux

12
1

9.3
9.2
9
9

-5.0

7.8
75
6.9
4.9

2

-5.0

11

2
1

-5.0
-5.0

16
32

relative performance loss [%]

Distributed and Unified Numerics Environment

Scope of the Grid Interface

structured, 3D conforming, 2D nonconforming

-8

vava .4

nested, 1D

red-green, bisection topological spaces

»
7
Fi
4

periodic 7

4
data decomposition mixed dimensions

Formal Definition of a Grid

Grids 1in the DUNE sense are hierarchical!

A hierarchical grid consists of three things:

@ A set of entity complexes
E=A{Fy,...,E}
@ A set of geometric realizations
M ={My,..., M}

@ A set of father relations

F=A{Fp,..., Fp_1}

Entity Complexes and Geometric Realizations

@ Entity complex: set system of entities, topological information

@ Reference elements: classify entities

@ Geometric realization: map from the RE into Euclidean space

Father Relation

(Eit1, Mitq)

(Ei, M;)

Hierarchical grid Leaf grid

@ Connect two level grids with a father relation
@ Only element father relation appears in the interface

@ [eaf entities constitute the leaf grid

Distributed and Unified Numerics Environment

Intersections

@ An d-1 dimensional point set
shared by two elements.

@ Described by transformations
e from a reference element

@ Arbitrary nonconforming
e intersections can be handled.

@ [_eaf- and level-wise intersections

@ Intersections with the domain
e boundary and the processor boundary

Parallel Data Decomposition

@ Grid is mappedto P ={0,...,P —1}.

@ E=U,p
@ 7, : E|p — “partition type”.
@ For codimension 0 there are three partition

types:
@ Interior: Nonoverlapping decomposition.
@ overlap: Arbitrary size.
@ ghost: Rest.

@ For codimension > 0 there are two additional

types:
@ border: Boundary of interior.
@ front: Boundary of interior+overlap.

E|, possibly overlapping.

@ Allows implementation of overlapping and
nonoverlapping DD methods.

Distributed and Unified Numerics Environment

Index Sets

@ Grid and data are totally decoupled
@ (Grid entities only provide indices

@ Level index: consecutive, starting from zero for all entities
of a given dimension on a given level

— index arrays

@ Leaf index: consecutive, starting from zero for all entities
of a given dimension on the leaf grid

— index arrays
@ Persistent index: nonconsecutive, does not change
during grid modifications (refinement / load balancing)

— index associative arrays

Implementation

@ Mathematical definition translates directly into C++ classes
@ Implementations using wrapper and engine classes

@ Access to entities by STL-style iterators:
Levellterator, Leaflterator, HierarchicIterator,
IntersectionlIterator

@ Arbitrary sets of grids can coexist in the same application

@ Currently available implementations:
AlbertaGrid, ALUGrid, OneDGrid, SGrid, UGGrid, YaspGrid

@ GNU AutoTools build system
@ Runs on most flavours of Unix

@ Licence: LGPL + linking exception

@ Surprisingly easy to use!

Code Example: Grid Creation

Create a structured grid

const int dim =3;

typedef Dune :: SGrid < dim , dim > GridType;
Dune :: FieldVector < int , dim > N (3);
Dune :: FieldVector < GridType :: ctype , dim > L (-1.0);
Dune :: FieldVector < GridType :: ctype , dim > H (1.0);
GridType grid (N, L, H);
Create a UGGrid from an AmiraMesh file
const int dim =3;
typedef Dune :: UGGrid < dim > GridType;
GridType grid;
Dune :: AmiraMeshReader<GridType>::read(grid, “filename”);

Under discussion: interface for unstructured grid creation

Code Example: Grid Traversal

Iterate over all elements on the leaf grid

typedef GridType :: Codim <0>:: Leaflterator ElementlLeaflterator;

for (ElementlLeaflIterator it = grid . template leafbegin <0>();

it !'= grid . template leafend <0>(),; ++it)
{
std :: cout << " wvisiting element which is a " << it -> type ()
<< std :: endl ;

Iterate over all vertices on the leaf grid
typedef GridType :: Codim <dim> :: Leaflterator VertexLeaflterator;

for (VertexLeaflIterator it = grid . template leafbegin <dim> () ;
it !'= grid . template leafend <dim>(); ++it)

std :: cout << " wvisiting vertex at " << 1t -> geometry () [0]
<< std :: endl;

Code Example: Quadrature

Integrate a function f over an element *it

Dune :: GeometryType gt = it - > type ();
const Dune :: QuadratureRule < double , dim >&
rule = Dune :: QuadratureRules < double , dim >:: rule (gt , p);
double result =0;
for (int 1 = 0; 1 < rule.size(); 1i++)
{
FieldVector<double, dim>
globalPosition = 1t —-> geometry (). global (rule[i] . position ())
double fval = f (globalPosition);
double weight = rule[i] . weight ();
double detjac = it->geometry (). integrationElement (rulel[i].position());

result += fval * weight * detjac ;

Linear Algebra: dune-istl

@ There are already template libraries for linear
algebra: MTL/ITL

Solver components

| @ Existing libraries cannot efficiently use
generic kernels (small) structure of FE-Matrices
E;:Leﬁg”e @ Solver components: Based on operator
concept, Krylov methods, (A)MG
l preconditioners
Matrix-Vector @ Generic kernels: Triangular solves,
Interface GauB-Seidel step, ILU decomposition

\ @ Matrix-Vector Interface: Support recursively
block structured matrices

/

@ Various implementations of the interface are
available

dune-istl 1s completely independent of dune-grid!

Block Structure in FE Matrices

sparse block
matrix

blocks are
dense

blocks have
fixed size

DG fixed p

blocks are
dense

blocks have
variable size

DG hp version

[A

blocks are
sparse

diffusion-
reaction
systems

2x2 block
matrix

each block
IS sparse

Taylor-Hood
elements

Example Definitions

@ A vector containing 20 blocks where each block contains two
complex numbers using double for each component:

typedef FieldVector<complex<double>, 2> MyBlock;
BlockVector<MyBlock> x(20) ;
X[3][1] = complex<double>(1l,-1);

@ A sparse matrix consisting of sparse matrices having scalar
entries:

typedef FieldMatrix<double,1l, 1> DenseBlock;
typedef BCRSMatrix<DenseBlock> SparseBlock;
typedef BCRSMatrix<SparseBlock> Matrix;
Matrix A(10,10,40,Matrix: :row_wilse) ;

/7 fill matrix
A[L1][1][3][4][0][0] = 3.14;

Vector and Matrix Interface

Mainly taken from sparse BLAS

@ Vector @ Matrix
@ Is a one-dimensional @ Is a two-dimensional
container container
@ Sequential access @ Sequential access using
@ Random access iterators
@ Vector space operations: @ Random access
Addition, scaling @ Organization is row-wise
@ Scalar product @ Mappings y =y + Ax;y =
@ Various norms y+ATx;y=y+ Ax;
@ Sizes @ Solve, inverse, left

multiplication
@ Various norms
@ Sizes

Code Example: Block Gaul3-Seidel

for (int i=0; i<x->size(); 1i++) {
VectorBlock r, v;

typedef MatrixType::row_type RowType;
const RowType& row = matrix[i];

typedef typename RowType::Constlterator ColumnlIterator;

r = rhs[i];

for (ColumnlIterator clt=row.begin(); clt!=row.end(); ++cIlIt)
// r_i —= A_13 X_7J

cIlt->mmv(x[cIt.index ()], r);

// Compute v = A_{i,1}"{-1} r[i]
mat[1][1] .solve (v, r);

// Add correction
X[1] += v;

Example: Poisson Problem

O

N

%

ANZAN

N
/1
N

N
N

AlbertaGrid, 3d AluSimplexGrid, 3d AluCubeGrid, 3d

UGGrid, 2d, simplices UGGrid, 2d, cubes UGGrid, 3d, simplices UGGrid, 3d, cubes

Distributed and Unified Numerics Environment

Example: Neuron Grid

@ Dendritic tree of L5 B pyramidal neuron (reconstruction by
Christiaan de Kock, MPIMF, Heidelberg)

@ NeuronGrid simulator (Stefan Lang, Olaf Ippisch)

Distributed and Unified Numerics Environment

Example: Parallel Computing

Density-driven flow (P. Bastian)

@ cell-centered finite volume scheme

@ matrix-free implementation

@ YaspGrid, 8e8 cells, 384 processors

@ 9000 timesteps, 3 days running time

Distributed and Unified Numerics Environment

Example: Multidimensional Coupling

@ Couple 3d linear elasticity with Cosserat rods
@ Left: 1 UGGrid, 1 OneDGrid

@ Right: 5 UGGrids, 4 OneDGrids

Example: dune-subgrid

(C. Griser, S. Prohaska, Z. Ritter, O. Sander.)

@ Axial compression of 9mm section of human distal radius
@ Subgrid of uniform grid (YaspGrid)
@ Uniform grid: 449x422x110, Subgrid: ca. 4.5e6 elements (22%)

@ Geometric multigrid with CFE coarse grid spaces

Further Information

@ P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kl6fkorn, M. Ohlberger,
and O. Sander, 'A Generic Grid Interface for Parallel and Adaptive
Scientific Computing. Part |: Abstract Framework', Matheon Preprint 403,
submitted to "Computing’

@ P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kl6fkorn, R. Kornhuber,
M. Ohlberger, and O. Sander, "A Generic Grid Interface for Parallel
and Adaptive Scientific Computing. Part I: Implementation and Tests in DUNE',
Matheon Preprint 404, submitted to Computing'

http://www.dune-project.org

	Title
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

