
Title

Introduction to the Dune autobuild system

Christian Engwer

Institute of Parallel and Distributed Systems, University of Stuttgart

23 January 2007

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 1 / 13



Introduction

Introduction

• Software projects grow bigger.

• Developers can’t be sure that a change in part1 does not break
part2.

→ Constant integration systems allow to run unattended tests against
the software.

→ dune-autobuild is the Constant integration or Automated Test

system from Dune.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 2 / 13



Introduction

Requirements

• We have different scenarios that need to be tested, i.e.
• full builds once a day,
• quick tests after each source change,
• builds of the development branch
• and of the release branch.

• The tests should be run on different architectures.

• Resources are limited and must be shared among different tests.

• The system should have a minimal set of dependencies, so that it
runs on a wide range of architectures.

• Results should be available via a web page.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 3 / 13



Introduction

Requirements

• We have different scenarios that need to be tested, i.e.
• full builds once a day,
• quick tests after each source change,
• builds of the development branch
• and of the release branch.

• The tests should be run on different architectures.

• Resources are limited and must be shared among different tests.

• The system should have a minimal set of dependencies, so that it
runs on a wide range of architectures.

• Results should be available via a web page.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 3 / 13



Introduction

Requirements

• We have different scenarios that need to be tested, i.e.
• full builds once a day,
• quick tests after each source change,
• builds of the development branch
• and of the release branch.

• The tests should be run on different architectures.

• Resources are limited and must be shared among different tests.

• The system should have a minimal set of dependencies, so that it
runs on a wide range of architectures.

• Results should be available via a web page.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 3 / 13



Introduction

Requirements

• We have different scenarios that need to be tested, i.e.
• full builds once a day,
• quick tests after each source change,
• builds of the development branch
• and of the release branch.

• The tests should be run on different architectures.

• Resources are limited and must be shared among different tests.

• The system should have a minimal set of dependencies, so that it
runs on a wide range of architectures.

• Results should be available via a web page.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 3 / 13



Introduction

Requirements

• We have different scenarios that need to be tested, i.e.
• full builds once a day,
• quick tests after each source change,
• builds of the development branch
• and of the release branch.

• The tests should be run on different architectures.

• Resources are limited and must be shared among different tests.

• The system should have a minimal set of dependencies, so that it
runs on a wide range of architectures.

• Results should be available via a web page.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 3 / 13



Introduction

Design

DatabaseBuild Server

Build Clients

Internet

Web Server

User

Setup consists of a central Build Server and several Build Clients.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 4 / 13



Introduction

Design

DatabaseBuild Server

Build Clients

Internet

Web Server

User

The Build Server opens a secure connection to the Build Clients via ssh

and public key authentication. The server send a configuration for a single
run, including which tests to run, etc.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 4 / 13



Introduction

Design

DatabaseBuild Server

Build Clients

Internet

Web Server

User

During the build the Build Clients writes a set of log files in a certain
format. After the build is finished the Build Clients open again an ssh

connection to the Build Server and pipe an archive including the log files
to the server.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 4 / 13



Introduction

Design

DatabaseBuild Server

Build Clients

Internet

Web Server

User

The Build Server feeds the log files to database, which allows
asynchronous access.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 4 / 13



Introduction

Design

DatabaseBuild Server

Build Clients

Internet

Web Server

User

User can query the web server dune-project.org for build results. A
dynamic web page shows the information, gathered from the database.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 4 / 13



Components

The dune-autobuild Components

autobuild-enqueue runs on server side. Register a job for execution.

autobuild-qrunner runs on server side. Try to execute previously
registered jobs once the resources are available.

autobuild-client runs on client side. Receives a configuration from
autobuild-run and runs a set of tests. The results are sent
back to the server.

autobuild-receive runs on server side. Receives an archive with log
files from the client.

autobuild-store runs on server side. Parses the log files and feeds the
data into a database

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 5 / 13



Components

autobuild-enqueue

• Enqueue a certain job to the Queueing System, specified via its tag.

• A tag specifies a certain configuration (i.e. what should be built, and
on which hosts). The tags configurations are stored in tags.d.

• Each host has a configuration in hosts.d, specifying how to reach
the host and which compiler etc. to use.

• autobuild-enqueue merges tag and host configuration, and marks
the resulting configuration as wait. If there are already equivalent
requests waiting, these old requests are removed.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 6 / 13



Components

autobuild-qrunner

• Runs every n minutes.

• Jobs marked as wait are changed to trigger.

• Jobs marked as trigger are spawned.

• autobuild-enqueue connects to the clients via ssh and sends the
job configuration.

• If the jobs host is not available, because an other is job is already
running, the job remains in state trigger.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 7 / 13



Components

autobuild-client

• autobuild-client is started on the incoming ssh connection.

Note: the ssh client is configured such that the server is not allowed to start
any other command than autobuild-client.

• The configuration is read from stdin and written to a config file.

• autobuild-client looks for an updated version of itself and restarts.

• All scripts in targets.d are executed. The results are written to log
files in spool.

• autobuild-client opens an ssh connection to the Build Server and
sends all logs as a compressed archive.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 8 / 13



Components

autobuild-receive and autobuild-store

• autobuild-receive is started on the incoming ssh connection.

• Generates a directory name, acquires a lock and creates the directory
in the spool directory.

• Extracts the received log archive to the new directory. Once it is
finished, an entry in store signals the existence of this log set.

Note: autobuild-receive does not release the lock, this will be done by
autobuild-store, once all log are processed.

• autobuild-store is run periodically and looks in store for new log
sets.

• The log set is parsed and the log file data is stored to the database.

• Once everything is stored the log files are removed and the lock is
released.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 9 / 13



User Interaction

Writing tests

• User can write tests in the usual autotool fashion.

• Tests are programs or scripts.

• Failure and Success are determined according to the exit code.

• System allows to specify tests that must succeed and tests that must
fail.

• With the current system it is very difficult to write tests that must
not compile, because the compilation is a prerequisite for test itself.

• Tests are listed in the Makefile.am under TESTS and XFAIL TESTS

• check PROGRAMS lists all programs needed for the tests.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 10 / 13



User Interaction

Accessing the results

• Results are presented in a hierarchic structure.
• Directory entries sum up errors and warnings of all entries.
• Each test shows the amount of errors, warnings and whether it did

run in the last run.
• For all non directory entries a time line can be accessed to see when

the test started to fail.
• The output of all tests can be inspected. Errors and warnings get

highlighted.
Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 11 / 13



Conclusions & Discussions

FAQ

Why not use an existing tool? We wanted to be able to use the test
environment included in the autotool tool chain. This was
not possible with existing tools, because these only allow one
result per operation. This would require us to add each
single test to the system.

Why not connect directly to the database? autobuild-client should
have minimal dependencies except the POSIX system.
Including a database client to the client environment would
increase the dependencies significantly.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 12 / 13



Conclusions & Discussions

FAQ

Why not use an existing tool? We wanted to be able to use the test
environment included in the autotool tool chain. This was
not possible with existing tools, because these only allow one
result per operation. This would require us to add each
single test to the system.

Why not connect directly to the database? autobuild-client should
have minimal dependencies except the POSIX system.
Including a database client to the client environment would
increase the dependencies significantly.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 12 / 13



Conclusions & Discussions

Open Problems

No direct support for test sets For different test runs we would like to
have different test sets. I.e.

• nightly build should build all
• head build should only build latest svn version
• release build should build the release code from svn and

from the tar balls.

A broken test can block the whole build Currently the system only has
one global timeout for the client.

Better integration with the web site In order to build the website we also
need to compile the different dune modules. Integrating the
website build into the continuous integration process would

• lower the system load,
• help debugging website problems.

Christian Engwer (IPVS, Stuttgart) dune-autobuild 23 January 2007 13 / 13


	Title
	Introduction
	The dune-autobuild Components
	User Interaction
	Conclusions & Discussions

