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Abstract

Starting from an abstract mathematical notion of discrete function spaces and opera-
tors, we derive a general abstraction for a large class of grid-based discretization schemes for
stationary and instationary partial differential equations. Special emphasize is put on con-
cepts for local adaptivity and parallelization with load balancing. The concepts are based
on a corresponding abstract definition of a parallel and hierarchical adaptive grid given in
[P. Bastian et al., Computing 82 (2008), no. 2-3, 103–119]. Unlike previous approaches,
where the implementation of numerical schemes is based on particular abstractions for ar-
rays and matrices, we describe an object oriented implementation of our abstraction in the
Dune-Fem library [http://dune.mathematik.uni-freiburg.de]. The leading design princi-
ple is a one-to-one correspondence between the mathematical objects and C++ interface
classes. By using interface classes we manage to separate functionality from data structures.
Thus, user implementations become independent of the underlying array or matrix imple-
mentations and the reorganization of data due to grid modification can be handled by the
Dune-Fem module. Efficiency is obtained by using modern template based generic pro-
gramming techniques, including static polymorphism, the engine concept, and expression
templates. We present numerical results for several benchmark problems and some ad-
vanced applications using the library Dune-Fem. The experiments demonstrate both, the
efficiency of the implementation and the applicability for a very large class of discretization
schemes and applications.
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1 Introduction
Starting from the eighties, there have continuously been attempts to develop general libraries
that provide infrastructure for implementing discretization schemes for partial differential equa-
tions for increasing classes of applications. Most of these developments, however, were based
on fixed data structures. This lead either to restricted applicability (cf. ALBERTA [33] - only
simplex grids with bisection and finite elements), or to very huge packages that became more and
more difficult to use (cf. UG [4] - all kind of elements, finite elements and finite volumes, adap-
tivity and parallelization, etc.). In recent years, there have been several attempts to overcome



1.1 Mathematical background for variational problems 3

such restrictions with the help of object oriented class libraries (cf. [40]). The benefit of such
approaches is the possibility to separate functionality from specific data structures. Thus, the
user can implement numerical schemes in a unified way, independent of the space dimension, the
actual data structures of the underlying computational grid, or the particular array or matrix
data structures used in the linear algebra.
In this contribution we are going to discuss such an approach for the abstraction of a very gen-
eral class of grid-based discretization schemes for partial differential equations, including finite
element, finite volume, and finite difference methods. The concept is based on an abstraction for
general parallel and adaptive computational grids that was given in [6] and the corresponding
implementation in the Distributed and Unified Numerics Environment Dune [5]. Our starting
point is the abstract mathematical notion of discrete function spaces and operators that form the
basis of a general abstraction for a large class of discretization schemes for stationary and insta-
tionary partial differential equations of any type. Special emphasis is put on concepts for local
adaptivity and parallelization with dynamic load balancing. Unlike in most previous approaches,
where the implementation of numerical schemes is based on particular abstractions for arrays and
matrices (cf. [30] and the references therein), we realized an object oriented implementation of
our abstraction in the Dune-Fem library (cf. [35]), using interface classes for discrete functions
and operators. Our leading design principle is a one-to-one correspondence between objects in
the abstraction on the one hand and the C++ interface classes on the other. Efficiency of the
implementation is obtained by using modern template based generic programming techniques
including static polymorphism, the engine concept, and expression templates.
The rest of the paper is organized as follows. In Subsection 1.1 we sketch the mathematical
background for variational problems and corresponding discretization schemes. In Section 2 we
then give an abstract description for grid-based discretization schemes for partial differential
equations. This is done by first reflecting the abstract definition of a computational grid from
[6], followed by the introduction of abstractions for discrete functions and operators. As our
particular interest lies in the support of parallel and adaptive discretization schemes, we extend
the abstract concept to handle such cases in Section 3. Example code snippets in Section 6
demonstrate how the abstract concepts are realized in the Dune-Fem module. Following the
abstract definitions from Section 2, we describe in Section 4 a realization of a corresponding
object-oriented class concept within the software library Dune-Fem. Finally, in Section 7 we
present numerical experiments for several benchmark problems and some advanced applications.
The range of schemes and applications prove the efficient usability of the presented design prin-
ciples.

1.1 Mathematical background for variational problems
In order to derive an abstract description of discretization schemes for partial differential equa-
tions, let us first look at stationary problems of the form

L(v) = f

where L : V → W ′ is an operator mapping functions v ∈ V into the dual space W ′ of some
function space W and f ∈ W ′ is a suitable right hand side. The above equality is then defined
by the action of the functionals on functions w ∈W , i.e.,

〈L(v), w〉 = 〈f, w〉 ∀w ∈W, (1)

where 〈·, ·〉 : W ′ ×W → R denotes the dual pairing between W ′ and W .
In practice, L will be the weak form of a differential operator and f will model forcing terms
and, possibly, boundary conditions. A simple example is Poisson’s equation, −∆v = f , in some
domain Ω with a Dirichlet boundary condition v = 0 on ∂Ω. In this case, V = W = H1

0 (Ω) and
the weak solution is defined by (1) with

〈L(v), w〉 :=

∫
Ω

∇v · ∇w, 〈f, w〉 :=

∫
Ω

fw.



4 2 ABSTRACT DESCRIPTION OF DISCRETIZATION SCHEMES FOR PDES

Starting from this abstract definition of stationary problems, a large class of discretization
schemes can be written in the abstract form

〈Lh(vh), wh〉 = 〈fh, wh〉 ∀wh ∈Wh, (2)

where now Lh : Vh →W ′h is a discrete operator (i.e., it acts on finite-dimensional function spaces
Vh and Wh) and fh ∈W ′h is a discrete right hand side. Of course, the discrete function space Vh
and Wh should be chosen such that Vh → V and Wh →W as h→ 0.
The abstract form (2) can reflect standard finite element discretizations, if Vh, Wh are globally
continuous, piecewise polynomial subspaces of V , W . But also Petrov Galerkin discretizations,
discontinuous Galerkin approximations, or finite volume schemes can be represented in the given
form for a suitable choice of discrete operators and function spaces. Even schemes which are not
based on grids, like reduced basis methods which use globally defined basis functions in some
other space W̃h or analytical basis functions can be cast into the framework described above.
Evolution equations of the general form

∂tv(·, t) = L(v(·, t))

with differential space operator L : V →W ′ can be treated by combining the framework for the
stationary case with a solver for ordinary differential equations using, for example, the method
of lines approach.

From the above observations we conclude that an abstract definition of discretization schemes can
be obtained through a proper definiton of discrete function spaces and discrete operators. On the
other hand, when it comes to the solution of the discretized problems, we would probably prefer
to use vectors and matrices, rather than discrete functions and operators. Since Vh and Wh are
finite-dimensional spaces, there exist isomorphisms IVh

: Vh → RdimVh and IWh
: Wh → RdimWh

and the discrete operator Lh can be interpreted as a mapping L̃h : RdimVh × RdimWh → R
through

L̃h(ṽ, w̃) := 〈Lh(I−1
Vh
ṽ), I−1

Wh
w̃〉.

Similarly, the right hand side fh ∈ W ′h can be interpreted as a mapping f̃h : RdimWh → R
through

f̃h(w̃) := 〈fh, I−1
Wh
w̃〉.

Thus, the discrete problem is equivalent to solving

L̃h(ṽh, w̃h) = f̃h(w̃h) ∀w̃h ∈ RdimWh . (3)

This gives us a view which can be handled with numerical linear algebra and many packages use
the concept of vectors and matricies for the implementation of their numerical schemes. Using
the isomorphisms IVh

and IWh
, we will be able to switch between both points of view. We will

reflect both interpretations in our abstraction for numerical schemes in Section 2. However, as
the derivation of modern numerical schemes is mostly formulated using discrete function spaces
and functions, this point of view is to be the basis of our construction of the interface used in
Dune-Fem.

2 Abstract description of discretization schemes for partial
differential equations

The base of our abstraction for discretization schemes is the Dune grid interface. The theoretical
description can be found in [6]. In the next subsection we will recall the essentials of the definition
of a grid from this article.
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Figure 1: Hierarchical grid H := {E0, E1, E2}. For simplicity, entities of higher codimension are
not plotted. The leaf grid (according to [6, Definition 16]) is also shown. Entities from the set
E0 (level 0) are colored in red, from E1 (level 1) in green, and from E2 (level 2) in blue.

2.1 Hierarchic grid structure

The grid interface of Dune is described in [6]. In this section we recall the central definitions
with some simplifications in comparison to the very detailed descriptions in [6]. The aim is to
give a general definition of a grid which in most publications is referred to as a non-degenerate
triangulation Th, where h denotes a characteristic grid width.
In the following we consider Ω ⊂ Rw, w > 0, to be the computational domain. Usually, w =
1, 2, 3, but higher dimensions are also allowed. We denote by G a discrete approximation of Ω
and all objects depending on a grid will be equipped with a subscript G.

Definition 1 (Reference Elements) As in [6, Def. 4], we define R to be a finite set of ref-
erence elements.

Remark 2 (Reference Elements implemented in Dune) Currently, Dune provides ref-
erence elements for points, lines, triangles, quadrilaterals, tetrahedra, pyramids, prisms and
cubes. Simplices and hypercubes are defined for arbitrary dimension.

In the following we consider hierarchical grids in the sense of [6, Def. 13]. A hierarchical grid
consists of entities distinguished by their codimension, .e.g., 0 for the elements, 1 for the edges,
and 2 for the verticies of a 2d grid (cf. [6]). In Figure 1a such a 2d hierarchical grid H is shown,
containing 3 levels created by refinement of element 1, and then by refinement of element 5 and
6. The leaf grid of H in the sense of [6, Definition 16] is shown in Figure 1b.

Remark 3 (Entities and geometric realization) In contrast to [6], we do not distinguish
between entity and its geometric realization, i.e., we will also consider an entity E to be a subset
of Rw, where appropriate. For a more detailed description we refer to [6, Def. 10].

Definition 4 (Grid) Let H := {E0, . . . , Em}, m ≥ 0, be a hierarchical grid in the sense of [6,
Def. 13]. For a given subset G ⊂ ⋃mi=0 Ei we define the domain ΩG :=

⋃
E∈G E. The dimension

of G will be denoted by d := dimG := dim ΩG. As mentioned above, the elements of G are called
entities and we denote by Gc := {E ∈ G | codimE = c} the entities of codimension c in G. G
forms a grid on ΩG, if the following holds:

E,E′ ∈ G0, E 6= E′ =⇒ int(E) ∩ int(E′) = ∅.
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Definition 5 (Level of an entity) Recalling [6, Def. 14], for a hierarchical grid H := {E0, . . . , Em}
we define the level function l :

⋃
i Ei → N0 through

l(E) = i⇐⇒ E ∈ Ei. (4)

The maximal level of the hierarchical grid is denoted with m.

Remark 6 (Example Grids) Given a hierarchical grid H, subsets in the sense of Definition 4
are for example the level-0 grid of H ([6, Def. 13]) or the leaf grid of H ([6, Def. 16]).

Remark 7 (Vertices and elements) The entities G0 of codimension 0 are also referred to
as elements; the entities Gd are also called vertices. Given an entity E ∈ G, we denote by
VE := {v ∈ Gd | v ⊂ E} the set of vertices of E.

Definition 8 (Reference Mapping) Given a grid G, we assume that for each entity E ∈ G
there exists exactly one reference element Ê ∈ R and a diffeomorphism FE : Ê → E. We call
FE the reference mapping of E. We denote by GÊ the set of entities with common reference
element Ê.

Definition 9 (Father relation) For a hierarchical grid H and an element E ∈ H (i.e., an
entity of codimension 0), we denote by CE the set of all children of E (see [6, Def. 11]). For
e ∈ CE we call E the father of e. We call C1

E := {e | e ∈ CE and l(e) = l(E) + 1} the set of all
direct children of E. Furthermore, we call E a leaf entity if CE = ∅.

To implement numerical schemes, degrees of freedom (DoF) have to be stored and these have
to be associated with the entities in a grid. This could, for example, be done as in the Finite
Element toolbox ALBERTA [33], where a DoF mapping indexing arrays storing the actual DoFs
is stored on the elements. In ALUGrid [36, 34, 18], there is no such thing as a DoF mapper;
the numerical data itself is stored on the element structure. In a similar way DoFs are bound to
elements in UG [4]. However, this leads to an unnecessary composition of grid structures with
user data which dramatically decreases the flexibility of the code.
In Dune, a more general way to attach data to the grid is used: index sets associate with
each entity a natural number that is unique within the set GÊ . The grid interface provides two
consecutive index sets, i.e., the level index map (set) and the leaf index map (set) [6, Defs. 24,
25] and a persistent index map for data transfer in adaptive computations [6, Def. 26].
In the following we give a common definition of an index set and a consecutive index set which
can be used to construct DoF mappings.

Definition 10 (Index map) Let G be a grid after Definition 4. Given injective mappings
λÊG : GÊ → I for Ê ∈ R, we define the index map λG(E) = λÊG (E).

Definition 11 (Index set) Given a grid G in the sense of Definition 4, we call ΛG = {ΛÊG | Ê ∈
R} an index set if ΛÊG ⊂ GÊ×N0 with |ΛÊG | = |GÊ | and ∀ (E1, i1), (E2, i2) ∈ ΛÊG : E1 = E2 ⇐⇒
i1 = i2, i.e., every entity E has a unique index i within the set of entities with the same reference
element. We call sΛÊ

G := 1 + max
(E,i)∈ΛÊ

G
i, the size of the index set ΛÊG .

An index set induces an index map λG via λÊG (E) := i⇐⇒ (E, i) ∈ ΛÊG .

Index sets can also provide a consecutive numbering of entities:

Definition 12 (Consecutive index set) Given a grid G, we call an index set ΛG a consec-
utive index set for G if ∀ Ê ∈ R: sΛÊ

G = |ΛÊG |, i.e., all entities with reference element Ê in the

grid G are numbered from 0 to sΛÊ
G − 1.



2.2 Discrete functions 7

Remark 13 (Index maps from Dune-Grid) Given an index map satisfying Definition 10
with a range set I ⊂ N, we can define an index set through {(E, λG(E))}E∈G. Thus, a level index
map κj from [6, Def. 24] naturally defines a level index set which forms a consecutive index
set in the sense of Definition 12. Likewise, we get a consecutive leaf index set from the leaf
index map λ described in [6, Def. 25].
On the other hand, the persistent index maps provided by Dune-Grid (see [6, Def. 26]) do not
induce an index set, since their range can arbitrary; however, they do satisfy Definition 10.

For numerical evaluation of integrals on the reference elements quadratures are needed. A
quadrature is a set of points and corresponding weights. The quadrature points are located in
a certain reference element on which the integrand is to be evaluated. The related weights sum
up to the volume of the reference element.

Definition 14 (Quadrature) Given a reference element Ê ∈ R we call a finite set of points
PÊ := {λ̂ | λ̂ ∈ Ê} a set of integration points and a set QÊ := {(λ̂, ω) | λ̂ ∈ Ê, ω ∈
R and

∑
ω = |Ê|} a quadrature on Ê. A quadrature QÊ is called a quadrature of order k

if for any polynomial function f ∈ Pk(Ê) the following holds:∫
Ê

f(x) dx =
∑

(λ̂,ω)∈QÊ

ωf(λ̂).

Remark 15 If no confusion is possible, we denote objects which depend on a reference element
Ê by a superscript c for the codimension, e.g., ΛcG instead of ΛÊG .

2.2 Discrete functions
In this section we present an abstract framework for grid based discretization schemes. The
concept of a discrete function space and a discrete function in the sense of the Dune-Fem
framework is defined. These definitions use the concepts from the previous section.
For the definition of discrete function spaces and discrete functions, we restrict ourselves to
discretizations based on grids as defined in Definition 4.

Definition 16 (Function space) By V Ω,U = {v : Ω → U} we denote an arbitrary function
space with domain Ω ⊂ Rw and range U , dimU = r ∈ N.

Definition 17 (Grid Function) We say that v ∈ V ΩG ,U is a grid function and for E ∈ G
we call vE : E → U , vE := v|E the local function of v on E.

Definition 18 (Discrete function space) Let VG ⊂ V ΩG ,U be a finite dimensional subspace
of a function space V ΩG ,U . For each element E ∈ G, let BE = (ϕEi )i∈IE ⊂ V E,U with IE ⊂ N0

and let µE : IE → VG. Then, we call DG :=
(
VG , (BE)E∈G , (µE)E∈G

)
a discrete function

space, if the following conditions hold:

1. BG :=
⋃
E∈G µE(IE) is a basis of VG. We call BG the global base function set of DG.

2. For all elements E ∈ G and all i ∈ IE, µE(i) is a continuation of ϕEi , i.e., µE(i)|E = ϕEi .

3. For all ψ ∈ BG and all elements E ∈ G, we have ψ|E ∈ BE ∪ {0}.
In this case, we call BE a local base function set and µE a local DoF mapper.

Definition 19 (Discrete function) Let DG :=
(
VG , (BE)E∈G , (µE)E∈G

)
be a discrete function

space. A function u ∈ VG is called a discrete function. Using the base function set of DG, we
have the representation

u =
∑
ψ∈BG

uψ ψ.

The vector (uψ)ψ∈BG is called the global DoF vector of u. In the following we will also write
u ∈ DG to denote discrete functions and to fix the corresponding global DoF vector.
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Definition 20 (Local discrete function) For a discrete function u ∈ DG =
(
VG , (BE)E∈G , (µE)E∈G

)
and an element E ∈ G, we define the local discrete function

uE = u|E =
∑
ψ∈BG

uψ ψ|E =
∑
i∈IE

uEi ϕ
E
i .

Using the local DoF mapper we have the relation uEi = uµE(i). The vector (uEi )i∈IE is called the
local DoF vector of u on E.

Example 21 (Fourier space) A simple example is given by the finite dimensional space VG
spanned by the basis functions

BG = { 1
2 , sinx, cosx, . . . , sinNx, cosNx}

for some N ∈ N (or its tensor-product equivalent). Defining BE = BG and taking the mapper µE
from IE = {0, 1, 2, . . . , 2N} to BG to be µE(0) = 1

2 , µE(2k) = cos kx, and µE(2k + 1) = sin kx
we arrive at a discrete function space.

Definition 22 (Shape function) A function ϕ̂Ê ∈ V Ê,U , Ê ∈ R, is called a shape function.

Example 23 (Lagrange shape functions) For Ê ∈ R the set of Lagrange shape functions
BL1

Ê
of order 1 is given by

BL1

Ê
:= {ϕ̂Ê,i | ϕ̂Ê,i ∈ Q1(Ê), ϕ̂Ê(v̂j) = δi,j ∀ i, j ∈ IL1

Ê
},

where VÊ = {v̂i}i∈IL1
Ê

is the set of all vertices of the reference element Ê. Note that for the

simplicial reference elements we have Q1(Ê) = P1(Ê).

Example 24 (Orthonormal shape functions) For Ê ∈ R let BO1

Ê
⊂ P1(Ê) be defined by

the Gram-Schmidt procedure applied to {1, x1, . . . , xdim Ê} with respect to the L2-norm on Ê.

Definition 25 (Localized discrete function spaces) A base function set (BE)E∈G is called
localized if there exists a set of shape functions (BR)R∈R and a transformation (ΨE)E∈G such
that BE = ΨE ◦ BÊ ◦ F−1

E . In this case we call D̂G :=
(
VG , (BR)R∈R, (µE)E∈G , (ΨE)E∈G

)
a localized discrete function space with the corresponding discrete function space DG :=(
VG , (BE)E∈G , (µE)E∈G

)
.

Example 26 (Lagrange discrete function space) Given a grid G of dimension d and the
set of vertices Gd (see Remark 7), the Lagrange function space V L1

G is given as the span of the
following basis:

BL1

G := {ϕv | v ∈ Gd, ϕv|E ∈ Q1(E) ∀E ∈ G, ϕv(y) = δv,y ∀ y ∈ Gd}.

The local base function set is defined as

BL1

E := {ϕv ∈ BL1

G | ϕv |E 6= 0}

Together with the local DoF mapper µL1

E (i) = ϕFE(v̂i) we call DL1

G :=
(
V L1

G , (BL1

E )E∈G , (µ
L1

E )E∈G
)

the Lagrange discrete function space.
Notice that the Lagrange discrete function space is also a localized discrete function space since
the local base function set can be constructed using the shape function set from Example 23 and
the reference mappings of each entity E. We write

D̂L1

G :=
(
V L1

G , (BL1

R )R∈R, (µ
L1

E )E∈G , (ΨE)E∈G
)
.
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Example 27 (Discontinuous Galerkin space) Let a grid G of dimension d and the set of
all elements G0 (see Remark 7) be given. Together with the orthonormal shape function set from
Example 24 the discontinuous Galerkin space V DG1

G of polynomial order 1 is given as the span
of the following basis:

BO1

G := {ϕEi | ϕEi = ϕ̂Êi ◦ F−1
E , ϕ̂Êi ∈ BO1

Ê
, 0 ≤ i < |BO1

Ê
|, E ∈ G, Ê ∈ R}.

We call
DDG1

G :=
(
V DG1

G , (BO1

E )E∈G , (µ
DG1

E )E∈G
)

the discontinuous Galerkin space with the local DoF mapper µDG1

E (i) = ϕEi . Obviously, the
discontinuous Galerkin space is also a localized discrete function space:

D̂DG1

G :=
(
V DG1

G , (BO1

R )R∈R, (µ
DG1

E )E∈G , (ΨE)E∈G
)
.

2.3 Discrete spatial operators

Based on the concept of discrete function spaces and discrete functions described above, we are
now going to introduce an abstract concept for discrete operators that can be used to describe
a large class of grid based discretization schemes.

Definition 28 (Operator) Let V , W denote arbitrary vector spaces over fields KV , KW .
Then an operator L : V →W is a mapping from V to W .

The discrete analogue is the following:

Definition 29 (Discrete operator) A discrete operator LG is an operator that maps one dis-
crete function space into another, i.e.,

LG : DG → D̃G .

Here, we assume that LG can be decomposed into a global operator Lpre, a set of local operators
LE acting on local discrete functions, and a global operator Lpost defined as follows

LG = Lpost ◦ diag{LE , E ∈ G} ◦ Lpre

where

Lpre : DG → {V E,U , E ∈ G},
LE : V E,U → Ṽ E,Ũ , for all E ∈ G,
Lpost : {Ṽ E,Ũ , E ∈ G} → D̃G .

Note that the definition of a discrete operator allows us to combine such operators locally, e.g.,

L2
G + L1

G = Lpost ◦ diag{L2
E + L1

E , E ∈ G} ◦ Lpre

if L1
post = L2

post = Lpost is linear and L1
pre = L2

pre = Lpre. We can even write

L2
G ◦ L1

G = L2
post ◦ diag{L2

E ◦ L1
E , E ∈ G} ◦ L1

pre

if we have L2
preL1

post = Id. Thus, only one grid traversal is needed also for combined discrete
operators.
The definition above is very general and covers a wide range of different classes of operators. In
the following we will focus on some classes of operators with special features.
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2.3.1 Projection operators

Definition 30 (Projection operator) Let DG =
(
VG , (BE)E∈G , (µE)E∈G

)
be a discrete func-

tion space according to Definition 18 and let B∗G be a set of linear functionals on V with
|B∗G | = |BG | and B∗G is a continuation of the dual basis to BG. Thus, we have for each ϕ ∈ BG a
ϕ∗ ∈ B∗G with

ϕ∗(ψ) = δϕψ ∀ψ ∈ BG .
This set of functionals defines a projection ΠG : V → VG through(

ΠG(v)
)
(x) :=

∑
ϕ∈BG

ϕ∗(v)ϕ(x) for all v ∈ V .

This means that the expression ϕ∗(v) defines the coefficient for the basis function ϕ, i.e., the
DoF. This can also be defined elementwise by(

ΠE(v)
)
(x) :=

∑
ϕ∈BE

ϕ∗(v)ϕ(x) =
(
ΠG(v)

)∣∣
E

(x) . (5)

Example 31 (Lagrange Interpolation) Let DL1

G be the first order Lagrange discrete function
space from Example 26 on a grid G. Then we choose for {ϕ∗(v)} the Lagrange Interpolation onto
the verticies, i.e., we have B∗G = {ϕ∗p | p ∈ Gd} with

ϕ∗p(v) := v(p) .

This allows us to define the elementwise interpolation of u ∈ V through

(
ΠL
E(u)

)
(x) :=

|BE |∑
i=1

ϕEi (x)u(vi) for x ∈ E and vi ∈ VE. (6)

ΠL
G (u) can be obtained as the sum over all basis functions, i.e.,(

ΠL
G (u)

)
(x) :=

∑
ϕv∈BG

ϕv(x)u(vi), v ∈ Gd . (7)

Example 32 (L2-Projection) Let DDGG be the discontinuous Galerkin space from Example 27
on a grid G. Then ϕ∗i (ϕj) is the L2 scalar product on the element E, i.e.,

ϕ∗i (ϕj) :=

∫
E

ϕiϕj =

∫
Ê

ϕiϕj |detDFE | .

The projection of u onto V DGG is then given elementwise by

(
ΠDG
E (u)

)
(x) :=

|BE |∑
i=1

ϕEi (x)

∫
Ê

ϕEi u |detDFE | for x ∈ E. (8)

uG is obtained by summing over all elements in G, i.e.(
ΠDG
G (u)

)
(x) :=

∑
E∈G

(
ΠDG
E (u)

)
(x) . (9)

2.3.2 Inverse operators

With the notion of discrete operators, we may write arbitrary grid based discretization schemes
as

LG(vG) = fG .

As we are interested in the solution vG of the discretization, we need to apply solvers in order to
invert the operator LG . Formally we may write vG = LG−1(fG). Thus, a solver can be interpreted
as an inverse operator.
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Definition 33 (Inverse operator) If LG : DG → D̃G is a discrete operator, we define a cor-
responding inverse operator S as

SLG : D̃G → DG .

An inverse operator is thus initialized with a discrete operator and maps from D̃G to DG. Iterative
or direct solvers of linear or nonlinear systems of equations can be realized in this concept of
inverse operators.

2.3.3 Linear Operator

An important type of operators are linear operators between two discrete function spaces. A
linear operator LG : VG → WG can be represented as a matrix, if basis function sets BVG ,BWG
have been chosen.

Definition 34 (Linear Discrete Operator) Let two discrete function spaces following Defi-
nition 18, DVG :=

(
VG , (BVE )E∈G , (µ

V
E)E∈G

)
and DWG :=

(
WG , (BWE )E∈G , (µ

W
E )E∈G

)
, be given. A

linear operator LG between these two spaces is called a discrete linear operator. From Def-
inition 19 it follows that for u ∈ VG we have a representation u =

∑
ψ∈BV

G
uψ ψ . Since LG is

linear we have
LG [u] =

∑
ψ∈BV

G

uψ LG [ψ] .

Since for ψ ∈ BVG the function LG [ψ] is in WG we also have a representation of the form LG [ψ] =∑
ω∈BW

G
αω,ψ ω and thus LG [u] =

∑
ω∈BW

G

∑
ψ∈BV

G
αω,ψ uψ ω The coefficients for the image of

v = LG [u] are given by

vω =
∑
ψ∈BV

G

αω,ψ uψ .

The matrix application of the matrix A = (αω,ψ) thus describes the transformation of the DoF
of u to the DoF of v = LG [u].

In a similar manner as in Definition 20, where we defined for discrete functions the concept of
local discrete functions, we now proceed to define local linear operators:

Definition 35 (Local Discrete Linear Operator) Let LG be a discrete linear operator bet-
ween two discrete function spaces DVG and DWG (see Definition 34). For two elements Er, Ec ∈ G
we define the local discrete linear operator LEr,Ec through the action of the operator on local
discrete functions uEc =

∑
i∈IVEc

uEc
i ψEc

i of the discrete function space DVG . Recalling the local

DoF mapper µVEc
from the Definition 18 which satisfy ψEc

i = µVEc
(i)|Ec

a natural choice is

LEr,Ec [uEc ] =
∑
i∈IVEc

uEc
i LG [µVEc

(i)]|Er
.

It is vEr = LEr,Ec [uEc ] a local discrete function on the element Er and therefore allows a
representation of the form vEr =

∑
i∈IWEr

vEr
i ωEr

i . Using

LEr,Ec [µVEc
(j)]|Er

=
∑
i∈IWEr

αi,j ω
Er
i

we obtain for i ∈ IWEr
the following representation of the coefficients: vEr

i =
∑
j∈IVEc

αi,j u
Ec
j .

Thus AEr,Ec
= (αi,j)i∈IWEr

,j∈IVEc
defines a local matrix.

Using the local DoF mappers µVE and µWE we compute αi,j = αµW
E (i),µV

E (j) .
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2.3.4 Combined operators

As an extension of the concept of spatial operators described so far, we study the case where
the spatial operator L has a more complex form, involving for example higher order derivatives
of v or non-linearities in a non-conservative product. In this case it is possible to employ a
decomposition of L into simpler operators. This can be done using the concept of combined
operators and passes.

Definition 36 (Combined operators and passes) Let V,W denote vector spaces and let L :
V →W denote an operator. We assume that we have vector spaces Vs,Ws, s = 1, . . . , S satisfying
V0 := V , Vs := Ws × Vs−1, s = 1, . . . , S and WS := W ′, and operators

Ls : Vs−1 → Vs, s = 1, . . . , S, and ΠS : VS × · · · × V0 → VS ,

such that
L = ΠS ◦ LS ◦ · · · ◦ L1.

Then L is called a combined operator and Ls a pass of L.

Using the concept of discrete operators for the approximation of the operators, this concept has
its discrete analogue.

Definition 37 (Discrete combined operators and passes) Let L : V → W denote a com-
bined operator with passes Ls, s = 1, . . . , S. If each of the operators Ls : Vs−1 → Vs is ap-
proximated by a discrete operator Ls,G : Vs−1,G → Vs,G, we may define a discrete combined
operator LG via

LG = ΠS ◦ LS,G ◦ · · · ◦ L1,G .

In this situation, Ls,G is called a pass of the discrete combined operator LG.

2.4 Time discretization of evolution equations
As an extension of the above concept for stationary problems, let us take a look at general
evolution equations of the following form

∂tv(·, t) = Lt[v(·, t)](·)

where Lt : V → V ′ is supposed to be a differential operator as in the stationary case. The
equation above has to be understood to mean for all ψ ∈ V

〈∂tv(·, t), ψ〉 = 〈Lt[v(·, t)](·), ψ〉

using the dual paring on V ′. Employing a discrete version Lt,G : VG → VG for the spatial operator
Lt we arrive at a semi-discrete version of the evolution equation:

∂tvG(·, t) = Lt,G [vG(·, t)](·)

This approach is termed method of lines. Expressing the discrete function vG(·, t) in terms
of the basis functions in VG , i.e., vG(·, t) =

∑
ϕ∈BG uϕ(t)ϕ(·) we arrive at a system of ordinary

differential equations for the coefficients uϕ:∑
ϕ∈BG

d

dt
uϕ(t)〈ϕ,ψ〉 = 〈Lt,G [vG(·, t)], ψ〉

for all ψ ∈ VG . This system can now be solved by employing standard numerical methods
for ordinary differential equations, e.g., Runge-Kutta or multistep methods. Depending on
the stability restrictions imposed by the spatial operator one can use either an explicit or an
implicit method. To overcome time-step restrictions for explicit schemes while at the same time
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retaining the time accuracy of explicit methods for non-restrictive terms a suitable combination
of explicit/implicit solvers is sometimes the best approach. To achieve this one has to rewrite
the evolution equations using two operators

d

dt
vh(t, ·) = Lexpl,h[vh(t, ·)](·) + Limpl,h[vh(t, ·)](·) (10)

where Limpl,h[vh(t, ·)](·) combines all the stability restricting terms. If both operators are for
example discrete combined operators, this leads to the formulation

d

dt
vh(t, ·) = ΠS [Lexpl,S[. . .Lexpl,1[vh(t, ·)]]](·) + ΠS [Limpl,S[. . .Limpl,1[vh(t, ·)]]](·) .

Hence, we may apply semi-implicit time discretizations — an explicit approach for Lexpl,h and
an implicit for Limpl,h. The implicit part then requires the concept of discrete inverse operators
to solve the arrising non-linear system.
The simplest time-discretization is given by the forward/backward Euler method. With a time-
step ∆t this leads to

vh(tn+1, ·)− vh(tn, ·)
∆t

= ΠS [Lexpl,S[. . .Lexpl,1[vh(tn, ·)]]](·) + ΠS [Limpl,S[. . .Limpl,1[vh(tn+1, ·)]]](·)

or alternatively (
Id−∆tLimpl,h

)
[vh(tn+1, ·)] =

(
Id+ ∆tLexpl,h

)
[vh(tn, ·)]

so that the inverse operator to
(
Id − ∆tLimpl,h

)
has to be computed. For further details and

examples concerning this concept we refer to [11].

3 Abstract description of adaptivity and parallelization

So far, storage of the degrees of freedom (uϕ)ϕ∈BG for a discrete function has not been specified
and the DoFs can be stored in any container. In the following we will focus on the common case
of a consecutive storage (ui)i∈IG with IG = {0, . . . , |BG | − 1} ⊂ N0. Using an index set ΛG (see
Definition 11) a bijection µG : BG → IG can be obtained.

Example 38 (Lagrange mapper) Given a grid G with dimension d and the set of vertices Ed
(see Remark 7) then the Lagrange function space V L1

G is given by Example 26. Using the index
set ΛdG we construct

µL1

G (ϕv) = λdG(v)

.

Example 39 (Discontinuous Galerkin mapper) Consider the discontinuous Galerkin space
V
DGp

G of order p (see Example 27 for p = 1) for a grid G of dimension d. The vector (ui)i has to
be organized in blocks bÊ each containing the DoFs for all entities of a given reference element
Ê. Denote the size of local base function set by mp; note that in the case of a discontinuous
Galerkin space the local Ansatz space can be Pp independent of the reference element Ê, i.e.,
mp = dim(Pp). Then we can prescibe the bijective mapping µDG1

G by

µDG1

G (ϕEi ) = mp

(
o(bÊ) + λÊG (E)

)
+ i

where o(bÊ) is the offset for block bÊ. Using an ordering < on the reference elements of dimension
d, we can define o(bÊ) =

∑
Ê′<Ê s

ΛÊ′
G .
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3.1 Adaptive function spaces

Local grid adaptivity has been proven to be a very efficient tool in decreasing numerical cost while
retaining accuracy. Modifying a scheme using a fixed grid to support adaptive computations
should require only minor changes. In the design of Dune-Fem efficiency and easy use of local
grid adaptivity are core concepts. To this end, each discrete function space provides a generic
way for restriction and prolongation of the discrete functions. Moreover, memory allocation and
DoF reordering is done transparently by a central DoF manager.
In this section, we describe the additional structures necessary to support local grid adaptation.
We start off with a short overview on refinement techniques and the definition of refinement and
coarsening. We then discuss the treatment of discrete functions during the adaptation phase.

3.1.1 Grid sequence

There are several well-known techniques for local grid refinement (sometimes also referred to
as h-refinement). All of the techniques partition one element info several smaller ones, called
children. These refinement techniques include red and red-green refinement [2, 8, 9, 32] as well
as bisection refinement [3, 33, 32, 9].

Red refinement

An element of dimension d is split into 2d chil-
dren of the same type. If the neighboring ele-
ments are not refined, hanging nodes will occur
in the leaf grid. Each grid level will be conform-
ing, though.

Red-green refinement

Element are refined using red refinement. Hang-
ing nodes are then resolved by the socalled green
closure. If elements of a green closure shall be
refined themselves, they are removed and their
father element is then refined red.

Bisection refinement
An element is bisected into exactly two children
of the same type. Usually, all hanging nodes are
resolved by recursively refining the neighbors.
While this produces a conforming leaf grid, the
grid levels need not be conforming.

A grid sequence is produced by removing child elements (coarsening) or refining elements (re-
finement), see also [6, Definition 23]. In the following, we assume that at a certain time there
are only two coexisting grids, i.e., the grid Hn before the adaptation and the grid Hn+1 after
the adaptation.

Definition 40 (Grid sequence) Given a hierarchical grid H0, an adaptive computation pro-
duces a sequence of hierarchical grids (Hn)n∈N. Given a grid Hn, the next grid in the sequence,
Hn+1, is created by the following two half-steps:

• Coarsening: The grid chooses a set E0,− ⊂ Hn of elements and ensures that either all
or no children of any element are contained in E0,−. The elements of E0,− are removed
from Hn together with all subentities of E0,− which are not subentities of Hn \ E0,−. Let
us denote this grid by Hn+ 1

2 .
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The set E0,− contains elements explicitly marked for removal, if removing them will not
violate the grid’s closure relations. Moreover, it may contain further elements, e.g., green
closure elements that were marked for refinement.

• Refinement: Based on some refinement strategy, new elements are added to Hn+ 1
2 along

with their subentities. The result is Hn+1 and we denote by E0,+ := Hn+1 \ Hn+ 1
2 the set

of new entities. The new elements are chosen such that Hn+1 is a valid hierarchical grid
in the sense of [6, Definition 13].

The set E0,+ contains all children of elements that were marked for refinement. It may
also contain children of elements that had to be refined due to the grid’s closure relations
such as the green closure or the conforming closure in bisection refinement.

Computations on grid sequences are assumed to be structured into alternating phases of work on
a fixed hierarchical grid Hn (calculation phase) and modifications of Hn to obtain the next
grid in the sequence Hn+1 (modification phase).

Remark 41 The actual order in which coarsening and refinement of the hierarchic grid are
performed is not specified in the Dune grid interface. In particular, the adaptation procedure
described in Definition 40 as coarsening and refinement is performed by a single method called
on the grid instance, turning Hn directly into Hn+1.

We assume in the following that a sequence (Hn)n of hierarchic grids induces a sequence (Gn)n
where Gn ⊂ Hn is a grid in the sense of Definition 4. For example, (Gn)n might be the sequence
of leaf grids (see [6, Definition 16]).

3.1.2 Data modification in adaptive simulations

During the modification phase of an adaptive simulation, the index sets and the corresponding
DoFs have to be transferred from Hn to Hn+1. Moreover, the discrete functions have to be
restricted for entities that vanish during the modification phase. Subsequently, the data has to
be prolonged to newly created entities. For these operations we will need projection operators
as defined in section 2.3.

Definition 42 (Local Restriction operator) Let H be a hierarchical grid and let G1,G2 ⊂ H
be two grids, where for all E ∈ G2 \ G1 the direct children CE,1 (see Definition 9) are in G1. For
uG1 ∈ DG1 we want to define a restriction uG2 ∈ DG2 through its operation on each E ∈ G2, i.e.,
we require uG2 |E = uG1 |E if E ∈ G1 and

uG2 |E = ΠE( (uG1 |e)e∈CE,1
)

otherwise. We then call ΠE the local restriction operator.
In the more general case of the restriction during the coarsening process from G1 ⊂ Hn to
G2 ⊂ Hn+ 1

2 we might only have for all E ∈ G2 \ G1 E =
⋃
e∈CE∩G1 e, i.e., not all direct children

are in G1 but more than one level is needed. In this case ΠE is defined recursivly for all level
below E to obtain the restricted data uG2 |E.

Remark 43 We assume that the restricted function uG2 |E is in the function space DG2 , so that
there are constraints on the choice of the local restriction operator ΠE, e.g., continuety must be
preserved.

Definition 44 (Local Prolongation operator) Using the same notation as in Definition 42
we use local prolongation operators ΠE to first define the data prolongation from E ∈ G1 \ G2 to
all e ∈ CE,1 ⊂ G2; if E =

⋃
e∈CE∩G2 e then ΠE is again used recursively to define uG2 |e for all

e ∈ CE ∩ G2.

Remark 45 Using the local restriction and prolongation operators data can be projected from
any two grids G1,G2 ⊂ H if for all E ∈ G2 one of the following holds:
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1. E ∈ G1

2. E =
⋃
e∈CE∩G1 e

3. there exists a F ∈ G1 with E ∈ CF
In the case of the adaptation cycle, (1) and (2) are true during coarsening and (1) and (3) hold
during grid refinement. To define the projected function uG ∈ G2 only local data from the direct
children or the father is required.

3.1.3 DoF storage during adaptive simulations

The consecutive index maps provided by the Dune-Grid interface can only be used in the
calculation phase and do not provide a valid index in the modification phase. To access data
in any phase, the Dune-Grid interface also provides persistent index maps assigning the same
index information to an entity that is contained in both grids, Hn and Hn+1 (see [6, Definition
26]). Since persistent indices are not necessarily natural numbers, they cannot be used to store
data in a vector-like structure with constant time access or in the consecutive storage we are
focusing on in this section. This means that user data that is stored in arrays in the calculation
phase has to be transferred to other containers that can be used with the persistent index map.
Clearly, this data transfer will increase computational cost and memory usage. However, the
efficient transfer of user data fromHn toHn+1 is crucial for some algorithms, such as an adaptive
explicit finite volume scheme, where computation time of one time step has a non-negligible part
that comes from the adaptation process.
Using the functionality of the Dune grid interface one can overcome this problem by imple-
menting a new persistent index set (mapping into the natural numbers) that combines the index
set features with the persistence attribute. The persistent index set is perfectly suitable for a
time-explicit scheme like an explicit finite volume scheme. For implicit schemes however, non-
consecutive index sets are not a good option since holes in the data arrays can dramatically
increase computational costs, for example when matrix-vector operations come into play.
If the computational cost in the computation phase and the modification phase are comparable
a consecutive and also persistent index set is desirable. Now the following problem arises: the
presistency condition that an index stays the same for an entity that is contained in Hn and
Hn+1 cannot be satisfied if the index set is to be consecutive. Since it might be necessary to
reuse an index i of an entity E which has been removed to ensure consecutivity, a persistent
entity has to be assigned the index i which would break persistency.
Therefore, the persistence attribute in Dune-Fem is defined slightly different from the persis-
tence attribute in [6, Definition 26]. In Dune-Fem, persistence means that an index set is
capable of handling changes caused by grid modifications. To ensure this, we only need that if
an index is changed the information of how it was changed is still available in the new grid.

Definition 46 (Persistent index set) Given a hierarchic grid sequence (Hn)n, the sequence
of index sets (ΛnG)n corresponding to the sequence (Gn)n is called persistent if for any n

1. ΛnG is an index set after Definition 11, and

2. There exists a function ξnG : N0 → N0 such that ξnG(λn+1
G (Ec)) = λnG(Ec) for all Ec ∈

Gn ∩Gn+1, i.e., if an entity is contained in both grids then its index in Gn can be traced in
Gn+1.

Remark 47 In the case that the index map induced by an index set is persistent in the sense
of Dune-Grid, ξnG is the identity.

Definition 48 (Consecutive persistent index set) A persistent sequence of index sets (ΛnG)n
is called a sequence of consecutive persistent index sets if each index set ΛnG is consecutive
in the sense of Definition 12 during the calculation phase.
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Remark 49 A sequence of consecutive persistent index sets provide valid indicies during the
modification phase but need not be consecutive in this stage. Notice that for a sequence of
consecutive persistent index sets the mapping ξnG from Definition 46 is more complicated than for
index sets that are only persistent.

In the following we will use the term (consecutive) persistent index set to denote a sequence of
(consecutive) persistent index sets. Consequently, we use ΛG instead of ΛnG .

Remark 50 (Consecutive persistent index sets in the modification phase) As stated in
Definition 48 the consecutive attribute is only needed in the calculation phase. This is reason-
able since no matrix-vector like operations are needed during the modification phase. Therefore,
consecutive index sets only provide this attribute in the calculation phase where it is actually
needed.

Using a persistent index set, data can be stored in containers with constant time access in both
the calculation and the modification phase and no data transfer between different containers is
required.
To support data restriction and prolongation, additional indices have to be inserted into persis-
tent index sets. On data restriction one needs to create new indices and data storage for the
fathers of elements that might vanish during the following adaptation step. The same applies to
elements that have been newly created during the previous adaptation cycle.
In the following we sketch how a sequence of (consecutive) persistent index sets can be obtained.
The whole adaptation cycle consists of the steps:

1. Before the coarsening of the grid indicies are added to the index set (see Algorithm 51).

2. Data is restricted.

3. After the adaptation phase indicies for new entities are added to the index set (see Algo-
rithm 51).

4. Data is prolonged.

5. Indicies which are not required anymore are removed (see Algorithm 53). This index set
is denoted by Λ∗G .

6. If a consecutive index set is required, ξG is constructed and the index set Λ∗G is compressed
to obtain the new index set (see Algorithm 55). In the case of a non-consecutive index set,
ξG is the identity and Λ∗G can be used as new index set.

Given an index set ΛG the following algorithms of how to insert and remove an index or of how
to compress an index set works for any ΛÊG in ΛG and any reference element Ê. Thus, we use
the abbreviation ΛG for ΛÊG .

Algorithm 51 (Inserting indices into an index set) Assume that a grid G and an index
set ΛG are given. If a new entity E∗ is inserted, we have to define a modified index set Λ∗G :=
ΛG ∪ {(E∗, sΛG )} for the new grid G∗ := G ∪ {E∗}. The index for the new entity is taken to be
the current size of the index set ΛG. The new size of the index set Λ∗G is then sΛ∗G := sΛG + 1.
Note that previously consecutive index sets remain consecutive.

Example 52 (Insertion into an index set) Consider G := {E0, E1, E2, E3, E4, E5}. A valid
index set for G is, for example, Λ0

G := {(E0, 0), (E1, 2), (E2, 1), (E3, 4), (E4, 7), (E5, 5)}. Accord-
ing to Definition 11 the size of this index set is sΛG = 8 which is the maximal index plus one.
Suppose that entity E6 has been inserted into G turning it into G∗. Following Definition 51 in-
serting a new index will produce Λ∗G := {(E0, 0), (E1, 2), (E2, 1), (E3, 4), (E4, 7), (E5, 5), (E6, 8)}
since we insert the previous size as a new index. The size of the new index set is sΛ∗G = 9. See
also Figure 2a for an illustration.
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Figure 2: Modification of an example index set.

Algorithm 53 (Removing indices from an index set) Given a grid G and an index set
ΛG. If an entity is removed from the grid, i.e., G∗ := G \{E∗}, E∗ ∈ G, then the index i∗ for E∗
has to be removed from the index set too. One obtains Λ∗G := ΛG \ {(E∗, i∗)}. The size however
stays the same, except in the case that i∗ = sΛG − 1. In general this turns a previous consecutive
index set into a non-consecutive index set. Thus, data compression is required at the end of the
modification phase to make the index set consecutive.

Example 54 (Removal from an index set) Given G := {E0, E1, E2, E3, E4, E5, E6} and an
index set ΛG := {(E0, 0), (E1, 2), (E2, 1), (E3, 4), (E4, 7), (E5, 5), (E6, 8)}. According to Definition
11 the size of this index set is sΛG = 9. Suppose that E2 will be removed due to coarsening, i.e.
G∗ := G \ {E2}, then the index for E2 is also removed from the index set to obtain Λ∗G :=
{(E0, 0), (E1, 2), (E3, 4), (E4, 7), (E5, 5), (E6, 8)}. The size of Λ∗G is the same as for ΛG, i.e.
sΛ∗G = 9. The index set is not consecutive any longer. In Figure 2a the removal of an index is
shown.

Algorithm 55 (Compression of index sets) Let the set Λ∗G obtained by inserting and re-
moving indicies from a consecutive index set, a new consecutive index set can be obtained by
defining the mapping ξG and chosing ΛG = {(E, i) | (E, ξG(i)) ∈ Λ∗G}. Note that the final
consecutive index set the condition sΛG = |Λ∗G | must be fulfilled. All indices contained in the set

ΞoldG := {i | (E, i) ∈ Λ∗G and i ≥ |Λ∗G |}
are hence going to be replaced by indices contained in the following set

ΞnewG := {j | (E, j) /∈ Λ∗G ∀E ∈ G and j < |Λ∗G |}.
Clearly, |ΞnewG | = |ΞoldG | =: sh which is called the number of holes. The mapping ξG can be
defined based on the natural ordering on the sets ΞoldG and ΞnewG . Using the uniquely defined
bijective and increasing functions ξoldG : {0, . . . , sh− 1} → ΞoldG and ξnewG : {0, . . . , sh− 1} → ΞnewG
we define

ξG(ξnewG (k)) := ξoldG (k) for k = {0, . . . , sh − 1}.
We call ξoldG the old index mapping and ξnewG the new index mapping.

Example 56 (Compression of index sets) The index set Λ∗G from Example 54 can be turned
into a consecutive index as follows. Study ΛG := {(E0, 0), (E1, 2), (E3, 4), (E4, 7), (E5, 5), (E6, 8)}
with size sΛG = 9. Following Definition 55 the set of indices that are larger or equal to |ΛG | = 6
is ΞoldG := {7, 8}. These indices have to be replaced by indices 0 ≤ i < |ΛG | = 6 and that are not
already used. The only possible choices are 1 and 3, i.e. ΞnewG := {1, 3}. As illustrated in Figure
2c the consecutive index set is Λ∗G := {(E0, 0), (E1, 2), (E3, 4), (E4, 1), (E5, 5), (E6, 3)}. The size
of Λ∗G is now sΛ∗G = 6 and Λ∗G is therefore a consecutive index set according to Definition 12.
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Definition 57 (Compression of user data) Using the mappings ξoldG , ξnewG from Algorithm 55,
we can define an old DoF mapper µoldG , a new DoF mapper µnewG , and the number of holes
nh in the DoF vector. The data compression is done by assigning all new DoFs with values from
the corresponding old DoFs, i.e.,

∀ k = 0, . . . , nh − 1 : uµnew
G (k) := uµold

G (k).

Let us consider an example of how the compression of user data works.

Example 58 (Old to new DoF mapper for DG spaces) Consider the mapper given in Ex-
ample 39. The number of holes for the block bÊ in the data vector is given by nÊh = mps

Ê
h .

Defining k, l through i = mpk + l with 0 ≤ i < nÊh and 0 ≤ l < mp, we obtain

µoldG (bÊ , i) := mp ξ
Ê,old
G (k) + l.

In the same way we define µÊ,newG using ξÊ,newG .
Using the index set from Example 56 and assuming p = 0 which leads to m0 = 1, we obtain
µoldG (i) = ξoldG (i) and µnewG (i) = ξnewG (i) for all i = 0, . . . , sh − 1 = nh − 1. Now, for DoF
compression the data stored in position 7 has to be moved to position 1 and the data from
position 8 has to be moved to position 3, see Figure 3. After the DoF compression all holes are
located at the end of the DoF vector. The new size of the DoF vector is 6 while the capacity
stays 9. For further enlargement of the data vector this space can be used without reallocation of
memory.

 
* * * * * *0 1 2 3 4 5 6 7 8

hole hole hole

* * * ** *0 1 2 3 4 5 6 7 8

hole hole hole

uG u∗
G

Figure 3: Compressing DoFs for uG .

Note that by using the old and new DoF mappers, time complexity for the data access is still
O(1) since all data can be stored in arrays.

3.2 Parallelization, data exchange and dynamic load balancing
In this section we summarize the concept of distributed grid structures. As mentioned in [6,
Section 5], parallel grids fulfilling the Dune-Grid interface have to follow the ’single program
multiple data’ (SPMD) programming paradigm (see [14] for details) based on a suitable domain
decomposition of the grid.
The domain decomposition is carried out in a two-step process. First, elements are assigned
to processes (master decomposition). In a second step the decomposition for the remaining
entities is determined from this master decomposition (extended decomposition). We assume
thatK ≥ 1 processes are available for the parallel computation and that each process is identified
by a number p ∈ P := {0, . . . ,K − 1}. Then the master decomposition is defined as follows:

Definition 59 (Master and extended decompostion) Given a hierarchical grid H, the mas-
ter decomposition is formed by entities with codimension c = 0. Following [6, Definition 20], the
master decomposition is described by the relation

D0 ⊆ E0 × P.

mapping the entities E0 ⊂ H to processes. If (E, p) ∈ D0 then entity E is known to process p.
The set of all entities known to process p is denoted by Hp.
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For entities of higher codimension we define the extended decomposition (see [6, Defini-
tion 22]) D ⊆ E × P by using the master decompostion and the subentity relation defined in [6,
Definition 7]. For all E ∈ E0, Ec ∈ E, c > 0 such that Ec is a subentity of E, the equivalence

(Ec, p) ∈ D ⇐⇒ (E, p) ∈ D0

must hold for all p ∈ P , i.e., an entity E and all its subentities are always present together in a
process.

The elements of a process are assigned to different classes. This is indicated by the partition
type.

Definition 60 (Partition type, [6, Definition 21]) The map

t0 : D0 → {i, o, g}

assigns a partition type t0(E, p) to entity E in process p. The three partition types are called
interior (i), overlap (o), and ghost (g).
For entities with codimension c > 0, two more partition types border (b) and front (f) are
introduced corresponding to entities that form the boundary between interior and overlap entities
and between overlap and ghost, respectively: For 0 < c ≤ d the map

tc : D → {i, o, g, b, f}

assigns a partition type tc(Ec, p) to entity Ec in process p ∈ P .

Remark 61 (Multiplicity of partition types) Each entity E has the partition type interior
in exactly one process, thus providing a non-overlapping decomposition of the entity set E0. In
contrast, overlap elements exist in several processes because the numerical algorithm demands
it explicitly (for example, overlapping Schwarz methods). Additional ghost elements may be
necessary to ensure data consistency, for example to evaluate numerical fluxes in a finite volume
or discontinuous Galerkin scheme. For more details on the partition type we refere to [6].

The correlation between a grid in a serial computation and the same grid used in a parallel
computation is given by the master entities. In a parallel computation all master entities form
the grid that would be present in an equivalent serial computation.

Definition 62 (Master process) Each entity Ec ∈ H is assigned a master process

m(Ec) =

{
p tc(Ec, p) = i

min{q | (Ec, q) ∈ D, tc(Ec, q) = b} otherwise

We will call an entity Ec ∈ H|p a master entity if m(Ec) = p and an entity Ec ∈ H|q a slave
entity if m(Ec) 6= q.

Remark 63 (Distributed discrete functions) To construct a discrete function u on a grid
G given a distributed discrete function up on Gp, the DoFs associated with an entity E are
taken from Gm(E), i.e., from the master entity. Therefore, numerical algorithms have to ensure
consistency in the sense that the data attached to master entities has to correspond to the data
from a serial computation.

In Figure 4a a quadrilateral grid is shown. Using this grid in a parallel computation with 4
processes a possible partitioning with one overlap layer displaying the partition types is shown
in Figure 4b.
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(a) serial grid (b) distributed grid with one overlap layer on 4 processors

Figure 4: Example quadrilateral grid with 16 elements and 25 vertices. For simplicity, edges are
not considered.

3.2.1 Communication

As described in [6, Remark 4], the data exchange is an important part of any parallel algorithm.
As an example the communication is explained for different user data using the different grid
partitionings presented in Figure 5.
In Dune communication means that data associated with the same entity in different processes
is exchanged, and any parallel grid implementation has to support this. Formally this can be
described as follows. In each process p ∈ P select a set of source entities Σp ⊆ H|p and a set
of destination entities ∆p ⊆ H|p. Then a communication operation moves data associated with
the entities Ec ∈ Σp ∩ ∆q from process p to process q 6= p (forward communication) or vice
versa (backward communication). In the Dune-Grid interface predefined subsets Σp,∆p are
available, see [5, Section 3.4].

Example 64 (Communication for the Lagrange space) We study the non-overlapping de-
composition shown in Figure 4a. For a discrete function uG ∈ DL1

G (see Definition 26) all
DoFs attached to interior entities (colored light red in Figure 5a) need not be exchanged, since
these entities only exist in exactly one process. All DoFs attached to border entities (colored
green in Figure 5a) have to be exchanged during a communication step, i.e., Σp = ∆p = {E ∈
Gp | tc(E, p) = b} . The communication path is visualized in Figure 5a with the arrows between
the border entities.

Example 65 (Communication for the Discontinuous Galerkin space) We consider the
grid G that is shown in Figure 4a and decomposed as described in Figure 5b, i.e., with ghost
elements. For a discrete function uG ∈ DDGG (see Definition 27) all DoFs attached to interior
entities (colored light red in Figure 5b) that exist on other processes as ghost cells have to be ex-
changed. Cells only existing in exactly one process are not considered during the communication
step, i.e., Σp = {E ∈ Gp | t0(E, p) = i} and ∆p = {E ∈ Gp | t0(E, p) = g}. The communication
path is visualized in Figure 5b by the arrows between interior and ghost elements.
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(a) Partitioning of the grid in Figure 4a with-
out overlapping or ghost cells. Also the cor-
responding partition types are shown (red for
interior and green for border)

(b) Decomposition of the serial grid into 4 parts including a
ghost cells approach.

Figure 5: Partition types and data exchange using a border–border and interior–ghost commu-
nication

3.2.2 Load balancing

Parallel computations using local grid adaptivity can cause an unbalanced grid decomposition,
e.g., much more entities are assigned to one process than to the other processes (see Figure 6). In
this situation processes with little work load have to wait until the other processes have completed
their computations. This delay occurs whenever synchronization of processes is required, e.g.,
during a communication step. An unbalanced grid partitioning thus leads to a severe reduction
of parallel efficiency.
A solution to this problem is the dynamic rebalancing of work load. Once local grid adaptation
leads to a situation with unbalanced partitions, a new master decomposition of the hierarchical
grid is created to restore the balance of work load. Thus dynamic load balancing requires that
entities with partition type interior in a process p can be migrated to another process q together
with all attached DoFs.

Definition 66 (Repartitioning operator) Given a hierarchical grid H and a set of proces-
sors P note that elements E0 ∈ H of codimension zero are interior only on one process p ∈ P .
The operator B describes repartitioning by assigning to each entity a new process number q ∈ P :

B(E) = q ∈ P.

Note that q = p means that an entity is not moved at all while q 6= p means the entity and all
attached data have to be transferred to process q.

Remark 67 (Balance of work load) The repartitioning operator can be defined based on graph
partitioning methods (e.g., ParMETIS [27]), space filling curve methods (cf. [25]), or geometric
partitioning methods.
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The definition of work load depends on different parameters. A good estimate is, for example,
the number of leaf entities contained in one process (cf. [34, 18]). Alternatively, the computation
time needed by one process to complete certain algorithmic steps could be used.

For a better understanding the next example describes the steps that have to be done to turn
the unbalanced grid in Figure 6 into the balanced decomposition in Figure 5b.

Figure 6: Unbalanced decomposition of the serial grid into 4 parts including a ghost cells ap-
proach.

Example 68 We consider the unbalanced grid given in Figure 6. The rebalancing with the
operator B described above could for example lead to the decomposition given in Figure 5b. To
this end process 0, for example, has to send the topological and the geometrical information of
the elements 2, 6, 8, 9 and 10 to other processes. But also the information of neighbors has to be
transferred in order to construct the necessary ghost cells. Since element 2 is moved to process
1, data attached to this element as well as data attached to all subentities also have to be copied
to process 1.

Remark 69 Load balancing does not modify the serial grid H but only the decomposition D.
Load balancing is part of the grid modification phase, i.e., non-persistent index sets cannot be
used during this process.

4 Realization of the abstract concepts in Dune-Fem

Following the theoretical concept from the previous sections all mathematical objects should
have a representation in the implemented software. For the grid interface this has basically been
described in the second paper on the Dune grid interface [5]. Some comments and additions to
this are also made in this section. The following section mostly concentrates on the implemen-
tation details of the Dune-Fem part. An exact description of the C++ implementation of the
interface classes can be found in the Appendix A. In this section we give an overview focusing
on the concepts and algorithms used.
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4.1 Subsets of hierarchic grids

In this section we describe classes that cast the abstract definitions from Section 2.1 into C++
objects. For classes described in the Dune grid interface, we refer to [5]. The only exception are
IndexSets, for which Dune-Fem provides a richer interface. Grids, as defined in Definition 4,
are not part of the Dune grid interface. They are modeled by the class GridPart.

4.1.1 Index sets

Index sets form the basis for the construction of DoF mappers µG . They can be generated
for arbitrary subsets G ⊂ H of a given hierarchic grid H and provide an index for each entity
E ∈ G. Index sets in the sense of Dune-Fem are extensions of those described by the Dune-
Grid interface and provide additional methods for enlargement and compression during adaptive
computations.

Class IndexSet (ref. Class 1 on page 49)
An IndexSet represents the interface for an index set ΛG (see Definition 11).

Class PersistentIndexSet −→ IndexSet (ref. Class 2 on page 49)
The PersistentIndexSet represents the interface for a persistent index set ΛG (see Defini-
tion 46). This interface class automatically adds itself to the DofManager’s list of persistent
index sets (see Class 30 and Class 34).

Class ConsecutivePersistentIndexSet −→ PersistentIndexSet (ref. Class 3 on page 49)
A ConsecutivePersistentIndexSet represents the interface for a consecutive and persistent
index set ΛG (see Definition 48). In particular, this class provides methods numberOfHoles,
oldIndex, and newIndex implementing the mapping ξnG (see Definition 48).

Example 70 (Old index – new index) Consider the index set given in Example 56. Then
the method numberOfHoles would return 2. The methods oldIndex and newIndex would return
the following:

i oldIndex(i) newIndex(i)

0 7 1

1 8 3

4.1.2 Grid parts

A pair (G,ΛG) of a grid G, in the sense of Definition 4, and an index set ΛG is represented by a
class implementing the GridPart interface.

Class GridPart (ref. Class 4 on page 50)
A GridPart describes the interface for a grid G (see Definition 4) equipped with a given index
set.

The following grid parts are currently implemented in Dune-Fem:

• The LeafGridPart provides a view to the leaf grid combined with the non-persistent
LeafIndexSet (see Remark 13).

• The LevelGridPart is a view to a fixed level grid with the non-persistent LevelIndexSet
(see Remark 13).
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• The AdaptiveLeafGridPart provides a view to the leaf grid in combination with a consecu-
tive, persistent IndexSet (see Definition 48). There is also a specialization of this grid part
for DG methods called DGAdaptiveLeafGridPart providing indices only for codimension
c = 0. This index set can be built and re-built more efficiently.

• The FilteredGridPart provides a view to a subset G′ of a grid G, described by a grid
part itself. A filter is used to determine which entities are part of G′. At the moment,
the index set provided is the same as for the underlying grid part. In general, it will be
non-consecutive with respect to G′ even if it is consecutive with respect to G.

4.2 Discrete functions
In this section we describe the Dune-Fem interfaces that model the mathematical objects de-
scribed in Section 2.2.

4.2.1 Functions and function spaces

The interface class FunctionSpaceInterface represents a function space V ΩG ,U (see Defini-
tion 16). It basically defines the types for domain and range vectors and for the derivatives.

Class FunctionSpaceInterface (ref. Class 5 on page 50)
The FunctionSpaceInterface represents the interface for a function space V Ω,U (see Defini-
tion 16).

Currently, there are two implementations of the FunctionSpaceInterface in Dune-Fem:

• The FunctionSpace<KD,KR,d,r > models functions from Kd
D → Kr

R; all vector and
matrix types are based on the FieldVector and FieldMatrix classes.

• The MatrixSpace<KD,KR,d,r,c> models functions from Kd
D → Kr×c

R .

Grid functions are described in Definition 17. Note that they may still be analytical functions
but with an elementwise representation. In Dune-Fem, grid functions are represented by im-
plementations of the following interface:

Class GridFunction −→ Function (ref. Class 8 on page 51)
A GridFunction represents the interface for a grid function v ∈ V ΩG ,U (see Definition 17).

As stated in Definition 17, a grid function has an elementwise representation, called local func-
tion. Local functions in Dune-Fem satisfy the following interface:

Class LocalFunction (ref. Class 7 on page 51)
A LocalFunction represents the interface for a local function vE of a function v ∈ V ΩG ,U on
an element E (see Definition 17).

4.2.2 Base function sets

A base function set represents the set BE for an entity E (see Definition 18).

Class BaseFunction (ref. Class 9 on page 52)
The class BaseFunction describes the interface for a single base function.

For flexibility reasons, this interface is realized through virtual methods. The potential loss in
performance is regained by caching the values and derivatives of base functions in quadrature
points (see Section 4.2.3).
Base functions are always evaluated in local coordinates of the entity E. In the case of a
localized base function set (see Definition 25), this is exactly what is needed to evaluate the
discrete function, especially since quadratures are also mostly given in local coordinates.
The set of base functions, as described in Definition 18 is represented by the following interface:
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Class BaseFunctionSet (ref. Class 10 on page 52)
A BaseFunctionSet represents the interface for a base function set BE (see Definition 18).

4.2.3 Efficient evaluation of base functions and numerical integration

The efficient evaluation of discrete functions is essential to every numerical algorithm. Common
examples include the evaluation of a function in Lagrange points or the numerical integration
using a quadrature rule. In both cases, the function needs to be evaluated in an a-priori known
list of points within the reference element. Especially for higher order base functions, these
evaluations are expensive. This performance issue can be overcome by pre evaluating the base
functions once for each such point set and storing the values (and derivatives) in a cache for
later use (see Concept 72). To keep cache sizes small, this should only be done for localized base
function sets (see Definition 25), since the values of their base functions depend on the reference
element only.
Dune-Fem provides two implementations of these evaluation point lists:

• The EvaluationPointList allows only brute force evaluation of the base functions.

• The CachingPointList is derived from the EvaluationPointList and additionally allows
caching if a CachingStorage ist used (see Class 15).

Similarly, there are two implementations of quadratures:

• The ElementQuadrature is an EvaluationPointList that additionally provides the quadra-
ture weights.

• The CachingQuadrature is a CachingPointList that additionally provides the quadrature
weights.

The base functions discussed above might only be given as functions on a reference element Ê.
For the numerical integration over faces a special quadrature rule is needed. This quadrature
is created by mapping a suitable quadrature for the reference element of the face into Ê (see
Figure 7). Such quadratures are, for example, needed for the flux evaluation in discontinuous
Galerkin methods. At the moment this concerns quadratures for the integration over elements
(codimension c = 0) and integration over faces or intersections (codimension c = 1) using base
functions given on the reference element. This is accomplished through the CachingQuadrature.

Example 71 (Quadrature on triangles) For a quadrature exact up to order 4 (see [20]), the
points in the reference triangle are plotted in Figure 7.

Concept 72 (Caching of base functions) For efficiency reasons the values of a base func-
tion in a quadrature point is cached, i.e., stored in a look-up table. This is implemented through
the CachingStorage, which implements the BaseFunctionSet interface and acts as a wrapper to
the real base function set. On creation of a CachingStorage, the values of all base functions are
cached for each existing quadrature. Similarly, on creation of a quadrature, all CachingStorages
that have the same reference element will cache the values of all base functions in these quadra-
ture points. Using this concept, most evaluations of base functions in local coordinates will reduce
to a simple memory look-up.
Notice that caching is enabled if and only if CachingStorage is used as BaseFunctionSet and
for evaluation a CachingPointList or CachingQuadrature is used.
To evaluate local functions using base function caching, special evaluation methods are provided
that take a quadrature point:

localFunction.evaluate(quadrature[i],val).
This method evaluates the local function at the i-th quadrature point using the caching mechanism.
Note that calling

localFunction.evaluate(quadrature.point(i),val)
would not use caching, even if the CachingStorage ist used.
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Figure 7: Points of a 4-th order ElementQuadrature< 0> for codimension 0 on the reference
triangle (left) and points of the 5-th order ElementQaudrature< 1> for the faces 0, 1, and 2
(right).

4.2.4 Mapping degrees of freedom

A DoF mapper is needed to provide the local to global mapping for the DoFs of a discrete
function. The construction of an appropriate DoF mapper is an important step in the im-
plementation of a discrete function space. While the DoF mapper is trivial in the case of a
discontinuous Galerkin space, it may become quite complicated in the case of higher order,
continuous discrete function spaces, e.g., higher order Lagrange finite element spaces.

Class DofMapper (ref. Class 16 on page 54)
The DofMapper represents the interface for a DoF mapper µG (see Definition 18).

The DoF mapper is created inside the discrete function space and can be accessed by the method
mapper of the class DiscreteFunctionSpace.

4.2.5 Discrete function spaces

The interface class DiscreteFunctionSpace basically combines a base function set, a grid part,
and a DoF mapper µG forming a discrete function space.

Class DiscreteFunctionSpace −→ FunctionSpace (ref. Class 17 on page 55)
A DiscreteFunctionSpace represents the interface for a discrete function space DVG (see Defi-
nition 18).

The following discrete function spaces are currently implemented:

• The LagrangeDiscreteFunctionSpace represents the Lagrange discrete function space
described in Example 26. The current implementation allows the usage of base functions
of polynomial order 1 and 2 for all grid implementations and arbitrary polynomial order
for twist-free grids (e.g., SGrid, YaspGrid, and ParallelSimplexGrid).

• The DiscontinuousGalerkinSpace is an implementation of the discontinuous Galerkin
space described in Example 27. Orthonormal basis functions with respect to the L2 scalar
product are available up to polynomial order 8.

• The LegendreDiscontinuousGalerkinSpace implements a discontinuous Galerkin space
using tensor product Legendre polynomials (implemented up to polynomial order 11) as
base functions. The use of this space is restricted to grids containing only cube elements.

• The FiniteVolumeSpace is a simple discrete function space that can be used for first order
Finite Volume methods. It provides piecewise constant Ansatz functions that evaluate to
unity.
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4.2.6 Discrete functions

The DiscreteFunction class models a function uG ∈ DVG . Since discrete function spaces have
finite dimension, each discrete function is represented by a finite set of coefficients for the base
functions, called the degrees of freedom (DoF) (see Definition 19).
From the programmer’s point of view, a discrete function brings together the discrete function
space and a certain container for the DoFs. Furthermore, a discrete function is also a grid
function and therefore provides an object representing the local function uE (see Definition 20).
A local discrete function provides references to the global DoFs associated with the fixed entity
E, thus allowing the direct modification of the discrete function.

Class DiscreteFunction −→ GridFunction (ref. Class 19 on page 56)
The DiscreteFunction represents the interface for a discrete function uG ∈ DG (see Defini-
tion 19).

There are several implementations of discrete functions. The most useful ones are the following:

• The AdaptiveDiscreteFunction implements the DiscreteFunction interface using as
DoF container the class MutableArray< RangeFieldType> which is a std::vector-like
array (see [26]) implementated in Dune-Fem. Similar to the std::vector, this container
can be converted into a standard C array that can then be used in an external software
package. An appealing feature of the AdaptiveDiscreteFunction is that standard C
arrays can directly be turned into a discrete function, too.

• The BlockVectorDiscreteFunction implements the DiscreteFunction interface using
the Dune-Istl BlockVector.

• The VectorDiscreteFunction provides an implementation of the DiscreteFunction in-
terface using an arbitrary vector type specified by a template parameter. The vector
implementation has to fulfill a std::vector-like interface. Derived from this class, the
ManagedVectorDiscreteFunction can be used to store persistent data.

• The CombinedDiscreteFunction provides a DiscreteFunction combining several discrete
functions of the same type to form one vector valued discrete function.

4.2.7 Local discrete functions

Since discrete functions are grid functions, they provide local functions uE . These local discrete
functions allow the modification of the global DoF associated with the entity E.

Class LocalDiscreteFunction −→ LocalFunction (ref. Class 20 on page 57)
The LocalDiscreteFunction represents the interface for a local function uE of uG (see Defini-
tion 20).

Note that the current implementation does not distinguish between interfaces for LocalFunctions
and LocalDiscreteFunctions; this will be rectified in future releases.

4.3 Discrete spatial operators

In the following we consider classes that represent the different types of operators discussed in
Section 2.3. They are all derived from a common virtual base class:

Class Operator (ref. Class 21 on page 58)
The class Operator prescribes the interface for a general operator L : V −→W that maps from
one function space V to another function space W .
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4.3.1 Projection operators

Examples for projection operators are the LagrangeInterpolation described in Definition 31 or the
L2-projection from Definition 32. Currently, the following projection operators are implemented
in Dune-Fem:

• The operator L2Projection implements the L2 projection described in Definition 32.

• The HdivProjection projects a discrete DG vector field into a discontinuous vector field
with continuous normal components over element faces (see [7]).

• The LagrangeProjection projects a possibly discontinuous function into a continuous
Lagrange space. For the special case of continuous data, this coincides with the Lagrange
interpolation (see Definition 31).

4.3.2 Inverse operators

Dune-Fem provides various implementations of inverse operators (seee Definition 33). The
interface looks as follows:

Class InverseLinearOperator −→ Operator (ref. Class 22 on page 59)
Given a linear Operator L, the class InverseLinearOperator describes the interface for the
inverse operator L−1 : DG −→ DG (see Definition 33).

Several inverse linear operators are currently implemented, including a ConjugateGradientSolver
and Orthogonal Error Methods (OEM) based on the BLAS library.

• The ConjugateGradientSolver implements a CG solver using the scalar product provided
by the discrete function.

• OEMCGOp implements an inverse operator using a BLAS based CG solver including precon-
ditioning.

• OEMBICGSTABOp implements an inverse operator based on a preconditioned Bi-CGSTAB
solver.

• OEMGMRESOp uses a preconditioned GMRES solver.

For the OEM inverse operators, SSOR preconditioning is available. To use these inverse opera-
tors, the operator L additionally has to fulfill the following interface:

Class OEMMatrix (ref. Class 23 on page 59)
Any matrix that shall be inverted using the OEM solvers has to satisfy the interface OEMMatrix.

Furthermore, Dune-Fem provides inverse operators based on the linear solvers from Dune-Istl
(see [10]). Bindings for the direct solver from the UMFPACK library (see [15], [41]) are also
available.

• ISTLCGOp uses the preconditioned CGSolver from Dune-Istl.

• ISTLBICGSTABOp uses the preconditioned BiCGSTABSolver from Dune-Istl.

• ISTLGMRESOp uses the preconditioned GMRESSolver provided by newer versions of Dune-
Istl.

• UMFPACKOp implements the interface to the UMFPACK direct solver.

For the Dune-Istl inverse operators the following preconditioning methods from Dune-Istl are
available: SOR, SSOR, Gauß-Seidel, Jacobi, ILU(0), and ILU(n) (see [10]). To use the Dune-
Istl based inverse operators, the operator L additionally has to fulfill the following interface:
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Class ISTLMatrix (ref. Class 24 on page 59)
Any matrix that shall be inverted using the solvers from Dune-Istl has to satisfy the interface
ISTLMatrix.

4.3.3 Linear operators

In Dune-Fem, linear operators are represented by classes satisfying the following interface:

Class LinearOperator −→ Operator (ref. Class 26 on page 60)
The class LinearOperator describes the interface for linear discrete operators in Dune-Fem
(see Definition 34). These linear discrete operators are representable by a matrix.

For the matrix representing the linear operator, different implementations, e.g., the BCRSMatrix
from Dune-Istl, can be used. On-the-fly implementation are also possible.
A LocalLinearOperator provides access to all matrix entries that are associated with a certain
entity; this can be seen as the extension of the LocalDiscreteFunction interface to linear
operators.

Class LocalLinearOperator (ref. Class 25 on page 59)
The class LocalLinearOperator describes the interface for local matrices (see Definition 35).

Currently, the following linear operator implementations are provided:

• SparseRowMatrixOperator is based on a sparse row matrix. This operator can be used
with the OEM inverse operators.

• ISTLMatrixOperator implements a linear operator storing a Dune-Istl BCRSMatrix which
implements a blockwise compressed row storage concept. This operator can be used with
the ISTL solvers.

4.3.4 Combined operators

For the discretization of evolution equations containing higher order derivatives the concept of
combined operators from Definition 36 in Section 28 is realized by Passes in Dune-Fem.

Class Pass −→ Operator (ref. Class 28 on page 61)
The class Pass provides an interface for passes of combined operators (see Definition 37).

Passes are organized as a statically linked list of operators. The root of the pass list is the class
StartPass. Currently, the following pass implementations are available in Dune-Fem:

• LocalDGPass is an implementation of a DG discretization for first order evolution equa-
tions.

• DGElliptPass is an implementation for solving elliptic partial differential equations within
a pass list.

• InsertFunctionPass is a pass to insert parameters into a pass list containing information
obtained in other parts of the program, for example, in other pass lists.

Details on the implementation of the pass concept can be found in [11].
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4.4 Time discretization
For solving non-stationary problems ∂tu = LG [u] in Dune-Fem, the method of lines can be
used (see Section 2.4). The technical realization of a time sequence is handled by the class
TimeProvider. It provides the simulation time and manages the time step size including syn-
chronization in parallel simulations.

Class TimeProvider (ref. Class 41 on page 66)
The class TimeProvider defines the interface for classes providing a simulation time, a time
step size, CFL number and so on, for the use in non-stationary simulations.

The interface for the discrete spatial operator LG is as follows:

Class SpaceOperator −→ Operator (ref. Class 42 on page 66)
The class SpaceOperator inherits the Operator class, specifying that V = W , i.e., LG : V −→
V for some discrete function space V . This operator also represents the interface for spatial
discretization operators used with ODE solvers.

For the implemented ODE solvers the interface is described by the class:

Class OdeSolver (ref. Class 43 on page 67)
The class OdeSolver describes the interface for an ODE solver.

Currently, the following ODE solver implementations are available:

• ExplicitRungeKuttaSolver is an implementation of the explicit Runge Kutta solvers
described in [13, 24] up to order 4.

• The ExplicitOdeSolver1 is a wrapper for the explicit ODE solvers from the parDG frame-
work [19]. Solvers up to order 4 are available.

• The ImplicitOdeSolver1 is a wrapper for the implicit ODE solvers from the parDG frame-
work [19]. Solvers up to order 3 are available.

• The SemiImplicitOdeSolver1 is a wrapper for the semi-implicit ODE solvers from the
parDG framework [19]. Solvers up to order 3 are available.

Class ODE solvers −→ OdeSolver (ref. Class 44 on page 67)
The ODE solvers ExplicitRungeKuttaSolver, ExplicitOdeSolver, or ImplicitOdeSolver
have exactly the same constructor parameter list. For the SemiImplicityOdeSolver two instead
of one spatial discretization operator has to be provided.

4.5 Data I/O, check pointing, and visualization of discrete functions
In Dune-Fem several classes handle input-output (I/O) or visualization of discrete functions.
These are

• The class DataOutput provides functionality for writing a DiscreteFunction to a file.
Several formats are supported such as XDR, VTK, and Gnuplot.

• The class CheckPointer provides a check pointing functionality for writing and reading
data to and from disk (using the class DataOutput) enabling a program to resume from a
previously saved state.
Data of objects that should be persistent are managed by the class PersistenceManager.
All objects registered to this class are saved when a check point is written. On restart, the
data is restored consistently.

1Due to implementation details of the parDG package, the field type of the discrete function space DG is
restricted to double when the ExplicitOdeSolver, the ImplicitOdeSolver, or the SemiImplicitOdeSolver are
used.
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Table 1: Default communication interfaces

Discrete function space Default communication interface

DiscontinuousGalerkinSpace InterorBorder_All_Interface

FiniteVolumeSpace InterorBorder_All_Interface

LagrangeDiscreteFunctionSpace InterorBorder_InteriorBorder_Interface

LegendreDiscontinuousGalerkinSpace InterorBorder_All_Interface

• For parameter handling throughout the code, the singleton class Parameter provides an
easy-to-use mechanism to access program parameters from every place in the code.

Dune-Fem provides several possibilities for data visualization.

• The implementation of the Grape h-Mesh interface for on-line visualizations using the
Grape library [23] is provided. The entire grid hierarchy is retained. If numerical data is
written in format XDR the data can also be visualized with Grape as a time sequence.

• The Dune grid interface provides the class VTKWriter which is able to write user data and
the grid G in a format readable by programs based on the Visualization Tool Kit (VTK)
[43]. Examples are VisIt [42] or ParaView [39]. The Dune-Fem class VTKIO extends the
VTKWriter so that DiscreteFunctions can easily be stored in VTK format.

• A simple output routine also allows to write discrete functions in a format usable with
gnuplot [37].

5 Adaptivity and parallelization in Dune-Fem

After we have focused on the interface classes used for constructing numerical schemes, we now
describe the classes realizing the concepts for parallel and adaptive computations from Section 3.

5.1 Parallelization and data exchange
The Dune grid interface provides methods for doing data exchange in parallel computations. For
all examples considered in this framework, this interfaces was sufficient for data communication
in parallel runs. Every discrete function space implementation creates an internal object handling
the communication. Data communication is initiated by calling the method communicate on
the discrete function space (see Class 17).
Furthermore, each discrete function space provides a default communication interface (see Ta-
ble 1). The default communication direction is always ForwardCommunication. A typical com-
munication for a piecewise discontinuous space is described in Example 65 (see also [5]).
For efficiency reasons we combine the possibilities presented by the Dune grid interface with a
suitable caching mechanism. When solving a linear system using an iterative solver one has to
communicate data in each iteration step of the solver. Using the communication interface of a
Dune grid this would involve iteration over grid elements in some sense, depending of course
on the grid implementation. For solving linear problems efficiently the iteration steps of the
linear solver have to be decoupled from any iterations over the discretization grid, if possible.
Otherwise, as for example shown in Section 7.1.1, optimal performance cannot be achieved.
The DoF dependency pattern required for communications is generated using the default com-
munication interface provided by the Dune-Grid interface. All DoFs indicies belonging to an
entity visited during this communication are stored in a look-up table. Then later communica-
tions do not involve any grid traversal, since all global DoF indicies are known and data vectors
can be accessed directly.
Actual communication is handled by a communication manager which is an implementation of
the following interface:
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Class CommunicationManager (ref. Class 29 on page 61)
The CommunicationManager is in charge of doing communications in parallel simulations. We
group all communications for discrete functions belonging to the same discrete function space
since the communication pattern is in most cases the same. The user still has the flexibility to
exchange the data in a different way if needed. Each discrete function space defines a default
communication pattern and an operation to be formed on the data.

Currently there are two implementations of communication managers.

• DefaultCommunicationManager is an implementation of the CommunicationManager us-
ing the standard communication features provided by the Dune grid interface.

• CachedCommunicationManager is an implementation of the CommunicationManager caching
the DoF dependency patterns for faster communication.

Example 73 (CachedCommunication) Using a cached communication manager for a linear
Lagrange discrete function space the communication maps for the border-border communica-
tion described in Example 64 looks the following way:

Process 0 M1 := {2, 7, 12}
M2 := {10, 11, 12}
M3 := {12}

Process 1 M0 := {2, 7, 12}
M2 := {12}
M3 := {12, 13, 14}

Process 2 M0 := {10, 11, 12}
M1 := {12}
M3 := {12, 17, 22}

Process 3 M0 := {12}
M1 := {12, 13, 14}
M2 := {12, 17, 12}

5.2 Adaptation and load-balancing

In adaptive simulations memory readjustment is a crucial task and it becomes even more com-
plicated in parallel simulations due to dynamic load balancing.

5.2.1 Memory management

In this section we describe some classes dealing with memory management. For a numerics code
supporting local grid adaptation, it is essential that once the grid is changed all user data, e.g.,
the index sets created by the user and the DoF storage, is adapted. For example, in ALBERTA
all data is known to the mesh to facilitate data reorganization during adaptation (see [33]). In
Dune data storage is completely decoupled from the grid. Therefore, an alternative concept is
needed. In Dune-Fem this is realized by a manager class that triggers all necessary resize and
compression processes after the grid has been changed. This manager class is:

Class DofManager (ref. Class 34 on page 63)
The DofManager is an implementation for the central management of memory needed for the
storage of user data, i.e., the DoFs and index sets created. To ensure that only one instance
of a DofManager for a hierarchic grid H exists, the DofManager can only be accessed via a
static method instance(H) which implements the singleton per unique key concept. Given
a hierarchic grid H, the method instance returns a reference to the associated DofManager.

To avoid responsibility clashes it must be ensured that this DofManager exists only once per
grid instance. To this end, the singleton per unique key (see for example [1]) concept has been
applied.
The DofManager is able to manage persistent and consecutive-persistent index sets satisfying
the interface:
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Class ManagedIndexSet (ref. Class 30 on page 62)
The DofManager needs to know all persistent and consecutive persistent index sets depending on
the grid instance H the DofManager is responsible for. Therefore, a list of ManagedIndexSet are
stored. These are simple wrapper classes storing references to the real index sets. The interface
methods are realized via virtual methods. A ManagedIndexSet is created by the call to the method
addIndexSet of the DofManager.

The DoF storage of a DiscreteFunction can be either

• (unmanaged), i.e., no resize is done on grid changes, or

• (managed), i.e., the size of the DoF storage is adapted whenever the grid changes and
DoF compression is performed, if enabled.

The class DofStorageInterface and ManagedDofStorageInterface provides the interface for
an unmanaged and a managed DoF storage, respectively.

Class DofStorageInterface (ref. Class 31 on page 62)
The DofStorageInterface is the interface for an unmanged DoF storage.

Class ManagedDofStorageInterface −→ DofStorageInterface (ref. Class 32 on page 62)
The ManagedDofStorageInterface inherits the DofStorageInterface and provides an inter-
face for a DoF storage that should be managed by the DofManager. This means during the
adaptation process the memory of these DoF storages is resized and compressed if necessary (see
also Definition 57).

On creation and deletion of a managed DoF storage the DofManager is notified and updates its
list of DoF storages.
To trigger the adaptation process, we need a further singleton per grid object:

Class AdaptationManager −→ SerialAdaptationManager, LoadBalancer (ref. Class 38 on
page 65)
The AdaptationManager class inherits from the SerialAdaptationManager as well as from
LoadBalancer. A reimplementation of the method adapt is done.

This class is responsible for

• calling the method adapt on the grid (see Definition 40),

• triggering the adaptation of DoF storages through the DofManager,

• performing the restriction and prolongation of user data (see Definitions 42 and 44),

• redistributing data after load-balancing in parallel computations.

In short, the AdaptationManager manages all parts of the modification phase of the simulation.
To transfer the data from Hn to Hn+1, the AdaptationManager must be provided with an
implementation of the following interface class:

Class RestrictionProlongation (ref. Class 39 on page 65)
The RestrictionProlongation represents the interface for a local restriction and prolongation
operator.

It is possible to combine RestrictionProlongation operators for several discrete functions
into a single operator. For each discrete function space, a default implementation of the
RestrictionProlongation operators is provided using the projections described in Section 4.3.1.
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Class RestrictProlongDefault −→ RestrictionProlongaion (ref. Class 40 on page 66)
The RestrictProlongDefault class implements the RestrictionProlongation interface. For
each discrete function space implementation there is one such default implementation of the
RestrictionProlongation interface.

The difficulty in handling data attached to a grid in Dune is that the adaptation process
described in Definition 40 is completely done by calling the method adapt on the grid instance.
This means that all data restriction has to be finished before the method adapt is called and
data prolongation can only be done afterwards. A generic adaptation algorithm might look as
follows:

Algorithm 74 (Generic Adaptation algorithm)

1. Switch from calculation phase to modification phase by calling the method preAdapt
on the grid instance. If true was returned start the restriction process:

(a) Reserve memory for all persistent data.
(b) Insert new indices into the persistent index sets for fathers of all elements that might

vanish during the adaptation.
(c) Restrict all data from elements that might vanish (see Definition 42 and Example

Code 8).

2. Adapt the grid by calling its adapt method. If true was returned start the prolongation
process:

(a) Reserve memory for all persistent data.
(b) Insert indices into the persistent index sets for all newly created elements (see Defi-

nition 51).
(c) Prolong all data from fathers to their newly created children (see Example Code 9).
(d) Remove indices for elements that have newly created children (see Definition 53).

3. If either restriction or prolongation of data was required, then the compression process is
activated:

(a) Compress all consecutive and persistent index sets (see Definition 55).
(b) Compress all data based on consecutive and persistent index sets (see Definition 57).
(c) Free unused memory.

hierarchicRestriction( H )
{
for E ∈ H with l(E) = 0 do

recursiveRestriction( E )
}

recursiveRestriction( E )
{
if CE,1 6= ∅ then
{
for e ∈ CE,1 do

recursiveRestriction(e)
if e might vanish ∀ e ∈ CE,1 then

data restriction for (CE,1, E)
}

}

Example Code 8: Generic restriction algorithm from Dune-Fem

Depending on the grid implementation different adaptation techniques are availabe as summa-
rized in Table 2. For parallel computations Dune provides two grid implementations that are
able to deal with parallel simulations as stated in Table 2.
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hierarchicProlongation( H )
{
for E ∈ H with l(E) = 0 do

recursiveProlongation(E)
}

recursiveProlongation( E )
{
for e ∈ CE,1 do
if e is new then

data prolongation for (E, e)
for e ∈ CE,1 do

recursiveProlongation(e)
}

Example Code 9: Generic prolongation algorithm from Dune-Fem

Table 2: Available grids and refinement techniques

Grid element local refinement parallel load balancing

AlbertaGrid (d = 1, 2, 3) simplex bisection
√

—
ALUCubeGrid (d = 3) cube red

√
dynamic

ALUSimplexGrid (d = 2, 3) simplex red —,
√

—, dynamic
ALUConformGrid (d = 2) simplex bisection — —
OneDGrid(d = 1) simplex bisection — —
UGGrid (d = 2, 3) simplex red-green or red — —
UGGrid (d = 2, 3) cube red — —
UGGrid (d = 2, 3) hybrid red-green — —
YaspGrid(d = 1, 2, . . .) cube —

√
static

Remark 75 YaspGrid is statically load balanced on construction. The package UG provides
parallelized grids that can be dynamically load balanced. Nevertheless, these features are not yet
implemented completely in the Dune grid interface implementation UGGrid.

Some Dune grid implementations, e.g., AlbertaGrid and ALUGrid, provide an alternative adap-
tation procedure allowing a call back from inside adaptation algorithm. The user’s restriction
and prolongation operator is called as soon as an element is newly created or about to vanish.
The interface method on the Dune Grid class has the following simple form:

bool adapt( restrictProlong )

The choice of the adaptation algorithm depends on the discretization scheme. Both methods,
the generic and the callback method have their advantages and disadvantages. For example, the
callback method is faster for finite volume schemes or discontinuous Galerkin methods while it
can be slower for others such as higher order Lagrange finite element methods. The choice of
the adaptation algorithm therefore depends on the discretization scheme.

6 Using the Dune-Fem module
In this Section we demonstrate the use of the classes defined in the Dune-Fem module. Details
on the concepts and the interface classes can be found in the Appendices.

6.1 L2-Projection
As an example an L2-projection of a given analytical function f and the projection error are
computed. The discrete function u in some discrete function space DG is defined by the equation∫

ΩG

uϕ =

∫
ΩG

fϕ for all ϕ ∈ DG .
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The first code snippet (see Listing 1) shows how discrete function spaces, functions and a linear
operator are constructed. An instance of a lagrange function u on the leaf grid is created. The
function maps to Rr, i.e., is vector valued if the integer constant r > 1. The order of the lagrange
space is p given in the template argument list. The required type for the local function uE and
the local operatorMEr,Ec can be easily accessed through the types of the discrete function space
and the linear operator. Other types, e.g., the iterator over the grid or the type of the local base
function set BE are also provided by the discrete function space.

Listing 1: Constructing discrete spaces and functions
// type of the grid (see Class 4), where HGridType is the Dune-Grid type of H.
typedef AdaptiveLeafGridPart<HGridType , In te r i o rBorder_Part i t i on> GridPartType ;
// type of the function space (see Class 5)
typedef FunctionSpace<double , double , HGridType : : dimensionworld , r> FunctionSpaceType ;
// type of the discrete function space (see Class 17)
typedef LagrangeDiscreteFunctionSpace<FunctionSpaceType , GridPartType , p>

DiscreteSpaceType ;
// type of the discrete function (see Class 19)
typedef AdaptiveDiscreteFunct ion<DiscreteSpaceType> DiscreteFunctionType ;

// type of the linear operator for the mass matrix (see Class 26)
typedef SparseRowMatrixOperator

<DiscreteFunctionType , DiscreteFunctionType , MyMatrixTraits<DiscreteSpaceType> >
MatrixType ;

// extract required types
typedef DiscreteSpaceType : : RangeType RangeType ;
typedef DiscreteSpaceType : : I te ratorType IteratorType ;
typedef DiscreteSpaceType : : BaseFunctionSetType BaseFunctionSetType ;

typedef DiscreteFunctionType : : LocalFunctionType LocalFunctionType ;
typedef MatrixType : : LocalMatrixType LocalMatrixType ;

// construct leaf grid G from a hierarchical grid H
GridPartType g r id ( hgr id ) ;
// construct lagrange discrete function space DG
DiscreteSpaceType space ( g r id ) ;

// create the analytical function f to project
MyFunction<FunctionSpaceType> f ;
// create the solution u
DiscreteFunctionType u( " s o l u t i o n " , space ) ;

In Listing 2, we perform a grid walkthrough to assemble the mass matrix M with entries Mij =∫
ΩG
ϕiϕj , and the functional b on the right hand side, given by bj =

∫
ΩG
fϕj .

Listing 2: Assembling mass matrix and right hand side
// create the functional b and the linear operator M
DiscreteFunctionType b( " f un c t i ona l " , space ) ;
MatrixType M( "mass␣matrix " , space , space ) ;

// initialization of M and b
M. r e s e r v e ( ) ;
M. c l e a r ( ) ;
b . c l e a r ( ) ;

// create some temporary storage for the values of the local base functions BE

std : : vector<RangeType> va lues ;

// walk over the grid G
const I te ratorType end = space . end ( ) ;
for ( I te ratorType i t = space . begin ( ) ; i t != end ; ++i t )
{

const EntityType &en t i t y = ∗ i t ;
const GeometryType &geometry = en t i t y . geometry ( ) ;

// obtain local views to the functional (see Class 7)
LocalFunctionType bLocal = b . l o ca lFunct i on ( en t i t y ) ;
// obtain local operator ME,E (see Class 25)
LocalMatrixType MLocal = M. loca lMat r ix ( ent i ty , en t i t y ) ;

// obtain the local base function set BE

const BaseFunctionSetType &baseFunct ionSet = space . baseFunct ionSet ( en t i t y ) ;
const unsigned int numBaseFunctions = baseFunct ionSet . numBaseFunctions ( ) ;
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va lues . r e s i z e ( numBaseFunctions ) ;

// compute the integrals
∫
E
ϕiϕj and

∫
E
fϕi using a quadrature with base function caching (see Class 14)

typedef CachingQuadrature<GridPartType , 0> QuadratureType ;
QuadratureType quadrature ( ent i ty , 2∗ space . order ()+1 ) ;
const unsigned int nop = quadrature . nop ( ) ;
for ( unsigned int qp = 0 ; qp < nop ; ++qp )
{

const QuadratureType : : CoordinateType &x = quadrature . po int ( qp ) ;
const double weight = quadrature . weight ( qp ) ∗ geometry . in tegrat ionElement ( x ) ;

for ( unsigned int i = 0 ; i < numBaseFunctions ; ++i )
baseFunct ionSet . eva luate ( i , quadrature [ qp ] , va lues [ i ] ) ;

RangeType fValue ;
f . eva luate ( geometry . g l oba l ( x ) , fValue ) ;
for ( unsigned int i = 0 ; i < numBaseFunctions ; ++i )
{

// add
∫
E
ϕiϕj to the operator M

for ( unsigned int j = 0 ; j < numBaseFunctions ; ++j )
MLocal . add ( i , j , weight ∗ ( va lues [ i ] ∗ va lues [ j ] ) ) ;

// add
∫
E
fϕi to the functional b

bLocal [ i ] += weight ∗ ( fValue ∗ va lues [ i ] ) ;
}

}
}

In the following Listing the mass matrix is inverted to produce u = M−1b using a CG based
inverse linear operator.

Listing 3: L2 projection (inversion of mass matrix)
// construct the inverse operator M−1 (see Class 22)
CGInverseOp<DiscreteFunctionType , MatrixType> inver seOperator ( M, 1e−10, 1e−10 ) ;
// compute solution
u . c l e a r ( ) ;
inver seOperator ( b , u ) ;

In Listing 4, the L2 difference between the analytical solution f and the discrete function u is
computed. Again, a grid walkthrough is performed to calculate the error on each entity using a
quadrature rule. Note the easy use of the local function to evaluate u.

Listing 4: Computing the L2 error
double e r r o r = 0 . 0 ;
// iterate over the grid G
for ( I te ratorType i t = space . begin ( ) ; i t != end ; ++i t )
{

const EntityType &en t i t y = ∗ i t ;
const GeometryType &geometry = en t i t y . geometry ( ) ;

// get local function uE (see Class 7)
LocalFunctionType uLocal = u . l o ca lFunct i on ( en t i t y ) ;

// compute
∫
E
|u− f |2

typedef CachingQuadrature<GridPartType , 0> QuadratureType ;
QuadratureType quadrature ( ent i ty , 2∗ space . order ()+2 ) ;
const int nop = quadrature . nop ( ) ;
for ( int qp = 0 ; qp < nop ; ++qp )
{

const QuadratureType : : CoordinateType &x = quadrature . po int ( qp ) ;
const double weight = quadrature . weight ( qp ) ∗ geometry . in tegrat ionElement ( x ) ;

RangeType fValue , uValue ;
f . eva luate ( geometry . g l oba l ( x ) , fValue ) ;
uLocal . eva luate ( quadrature [ qp ] , uValue ) ;
e r r o r += weight ∗ ( fValue−uValue ) . two_norm2 ( ) ;

}
}
e r r o r = std : : s q r t ( e r r o r ) ;
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6.2 Further examples

The storage for the discrete function u itself allows for automatic resizing, prolongation, and
restriction. Using the adaptation manager from Dune-Fem and the default restriction/prolon-
gation operators on the discrete function space, the few lines of code for adapting a grid and
keeping the discrete functions consistent, are given in Listing 5. The simplest approach for data
communication is also shown. Calling a single method on the discrete function space results in
the communication of all data required for keeping the discrete function consistent over process
boundaries.

Listing 5: Adapting and communicating a discrete function
// type of the default restriction and prolongation operator (see Class 40)
typedef Rest r i c tPro longDe fau l t<DiscreteFunctionType> Restr ictProlongType ;
// type of the adaptation manager (see Class 38)
typedef AdaptationManager<HGridType , Restr ictProlongType> AdaptationManagerType ;

// create restriction and prolongation operator for u and the adaptation manager
Restr ictProlongType uRest r i c tPro long ( u ) ;
AdaptationManagerType adaptationManager ( hgrid , uRest r i c tPro long ) ;

// mark grid for refinement and coarsening using some external method mark
mark( hgrid , u ) ;

// adapt the grid with automatic restriction and prolongation of the discrete function u
adaptManager . adapt ( ) ;

// communicate u using the space’s default communication (see Table 1)
space . communicate ( u ) ;

We conclude our short survey of the module Dune-Fem by demonstrating in Listing 6 of how
to handle the discretization of evolution equations in Dune-Fem. Assuming that a discrete
spatial operator DiscreteOperatorType given, the construction of an ODE solver and the simple
implementation of a time stepping scheme is shown.

Listing 6: Using a time stepping scheme to solve an evolution equation
// initialize the time provider (see Class 41)
GridTimeProvider<HGridType> timeProvider ( 0 , hgr id ) ;
// create space discretization operator derived from Class 42
DiscreteOperatorType spaceOperator ( order ) ;
// construct ODE solver (see Class 43)
typedef Expl ic itRungeKuttaSolver<DiscreteFunctionType> ODESolverType ;
ODESolverType odeSo lver ( spaceOperator , t imeProvider , order+1 ) ;

// set the initial time step estimate
odeSo lver . i n i t i a l i z e ( u ) ;
// time loop
for ( t imeProvider . i n i t ( ) ; t imeProvider . time ( ) < T; t imeProvider . next ( ) )
{

t imeProvider . provideTimeStepEstimate ( maxTimeStep ) ;
odeSo lver . s o l v e ( u ) ;

}

7 Proof of concept

We proceed with the presentation of several benchmark problems followed by a selection of more
complex test cases.

7.1 Benchmark problems

We start off with a selection of well known benchmark problems to show the possibilities and
efficiency of the Dune-Fem software package.
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7.1.1 Poisson’s equation

First, we consider a benchmark problem for the Poisson equation

−∆u = f in Ω ⊂ Rd, d ∈ {1, 2, 3}
u = g on ∂Ω

(11)

on the domain Ω = [0, 1]d. The data is chosen to yield an exact solution

u(x) = e−10|x|2 .

Therefore, the right hand side of (11) is given by

f(x) = −∆u(x) =
(
20d− 400|x|2

)
e−10|x|2

and the boundary data is simply g = u|∂Ω.

Discretization

This problem is solved using a standard conforming finite elements approach.

Implementation details

For the implementation of the finite element space the LagrangeDiscreteFunctionSpace (see
Section 4.2.5) was used. The system matrix storage type is compressed row, implemented by the
class SparseRowMatrixOperator (see Section 4.3.3). The system is solved by a standard CG
method without preconditioning (see class ConjugateGradientSolver in Section 4.3.2). During
each iteration step of the CG solver a border-border communication has to be performed (see
Example 64). Adaptation and load balancing is handled by the class AdaptationManager (see
Section 5.2).

Numerical results

In Figure 10 the approximate solution of equation (11) on a non-conforming adaptively refined
hexahedral grid is shown. The simulation used ALUCubeGrid and P1 Lagrange elements. In
Figure 11a the solution of (11) on a non-conforming adaptively refined triangular grid is shown.
The simulation used ALUSimplexGrid and P1 Lagrange elements. The local grid adaptivity
uses a residual based error estimator for this problem (see for example [33]). In Figure 11b the
solution of (11) on a Cartesian grid using P6 Lagrange elements is shown.

Figure 10: Solution of the Poisson equation on a non-conform refined hexahedral grid.
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(a) non-conforming adaptively refined triangular
grid (ALUSimplexGrid) and P1 Lagrange elements.

(b) Cartesian grid (YaspGrid) and P6 Lagrange ele-
ments.

Figure 11: Solution of Poisson’s equation. the P1 solution 105338 grid cells were necessary while
for the P6 solution only 4 cells. In both cases the L2-error is approximately 2.8 · 10−5.

In Figure 12 the run times for solving this problem on a very fine uniformly refined grid contain-
ing about 1.34 · 108 hexahedrons using different grid implementations and different numbers of
processors is shown. Each computation was done twice using different methods of communica-
tion. These communication methods are described in Section 5.1. One communication method
uses the data communication provided by the Dune grid interface, which is implemented by
the class DefaultCommunicationManager, see Section 5.1. The other method builds a cache
holding information of all DoFs that need to be exchanged during a communication procedure
and thus a grid traversal is not necessary and the message buffers can be allocated at once since
the size is already known. The implementing class is CachedCommunicationManager, see Section
5.1. The computations using cached communication are tagged with cached in both plots of
Figure 12. In the left part of Figure 12 one can see that the computation using ALUCubeGrid
and the cached communication is more than twice as fast as the run using the non-cached com-
munication. With a higher number of processors the gap becomes even larger. For YaspGrid (a
Cartesian grid) the cached communication is only slightly faster since the traversal of grid cells
is already very cheap. Also, the results for the computation using the cached communication are
more uniformly decreasing. YaspGrid was used without overlapping cells and for ALUCubeGrid
all vertices with partition type ghost are neglected as unknowns for the solution, right hand
side, and the system matrix. Comparing both grids, we can see from Figure 12 (left) that they
show almost identical run times. We state that the use of the cached communication is essential
for an efficient parallel communication using a large number of communication operations during
execution of the numerical solution algorithm such as a linear solver or also an ODE solver does.

7.1.2 The Euler Equations

For a compressible inviscid fluid the Euler equations of gas dynamics have the following form:

∂tu +

d∑
j=1

∂xjf j(u) = 0, in ([0, T )× Ω ⊂ Rd), d ∈ {1, 2, 3} (12)

where the vector of the conservative variables is

u = (ρ, ρv, ρE)T , ρv = (ρv1, . . . , ρvd)
T ,

where E the total energy. We assume that solutions u of 12 take its values in the set of states

Ψ :=
{

(ρ, ρv, ρE) | ρ > 0,v ∈ Rd, ρE − ρ

2
|v|2 > 0

}
,
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Figure 12: Run times (right) and efficiency (left) for a parallel computation for the Poisson
equation. The plots show the results for two different grid implementation (ALUCubeGrid and
YaspGrid) on a hexahedral grid containing about 1.34 · 108 elements and the problem size is
about 1.35 · 108 unknowns.

and the convective flux functions for i = 1, ..., d:

f i(u) :=
(
ρvi, ρviv + P (u)ei, vi(ρE + P (u))

)T
where ei is the unit vector in direction i. The system is closed by the equation of state for an
ideal gas where the pressure is given by P (u) = (γ − 1)

[
ρE − ρ

2 |v|2
]
, where γ is the adiabatic

constant (see for example [29]).

Discretization

Now, to rewrite the system in the form of equation (10) we simply have to define the operator
Lexpl,h. The operator

Lexpl,h[u] := −∇ · F (u)

only contains the conservative part with F (u) := (f1, . . . ,fd).
With the definition of Lexpl,h and an appropriate numerical flux the spatial discretization is
already obtained. Appropriate numerical flux functions are for example the Local-Lax-Friedrichs
flux or the HLL flux function which can be found in standard textbooks on the subject (see for
example [29, 31]).
We apply the Runge-Kutta Discontinuous Galerkin discretization for this problem. The dis-
cretization includes a limiter based stabilization technique. Both is described in detail in [16].

Implementation details

The discontinuous Galerkin space is implemented by the class DiscontinuousGalerkinSpace
(see Section 4.2.5) providing L2 orthonormal basis functions. For time discretization a Runge
Kutta solver has been used. This solver is implemented by the class ExplicitRungKuttaSolver
(see Section 4.4). Adaptation and load balancing is handled by the class AdaptationManager
(see Section 5.2). During each sub step of the ODE solver an interior-ghost (see Example 65)
communication has to be performed. This is done using the cached communication implemented
by the class CachedCommunicationManager described in Section 5.1.

Numerical Results

As benchmark problem we consider the Forward Facing Step (see [16] for details) for d = 3.
In Figure 13 the density distribution including the adaptively refined grid can be found. One
can also see the underlying grid partitioning. The simulation has been done on the parallel
super computer XC4000 of the SSC Karlsruhe using 512 processors. Quadratic polynomial basis
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functions have been used. The final grid contains about 4.5 million grid cells which leads for
this example to about 2.25 · 108 unknowns. Grid adaptation is performed in each time step.
If the local grid adaptation leads to an unbalance of work load then a dynamic load balancing
is performed such that the work is again equally distributed between the processors2 again. A
detailed EOC analysis of this discretization as well as other benchmark problems for this problem
can be found in [16].

Figure 13: Density distribution, adapted grid and partitioning of the grid at T = 2. The
calculation used ALUCubeGrid and 512 processors. Quadratic basis functions have been used.

In Figure 14 the parallel performance of the code is presented. In the left part the run times for
one time step as well as only for the ODE solver are plotted for the runs on 128, 256, and 512
processors. In the right part the efficiency due to this run times is shown. One can see that the
overall efficiency is above 0.93 and the efficiency of the serial part (ODE solver) of the code is
above 0.96 which is very close to the optimal value of 1. This indicates that the parallelization
of the code is very efficient for this problem.
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Figure 14: Run times for a parallel computation (left) and efficiency of the parallel code (right) for
the Euler equations using the third order stabilized DG discretization using hexahedral elements
(ALUCubeGrid). On the left plot the runtime for one complete timestep (all) and the runtime of
one timestep taken by the ODE solver (ode) are shown. In the right plot the efficiency of the
code is shown.

7.1.3 The Stokes problem

As a third benchmark problem we consider a local discontinous Galerkin approximation of the
Stokes equation. Therefore, we look at the following Stokes system on a bounded domain Ω ⊂ Rd,
d = 2, 3 with Dirichlet data.

2The load balancing considers the number of grid elements considered in the numerical algorithm and is based
on the graph partitioning algorithm provided by METIS [38].
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−∆u +∇p = f in Ω, (13)
∇ · u = 0 in Ω, (14)

u = gD on ∂Ω (15)

with the compatibility condition ∫
∂Ω

gD · n = 0. (16)

Here u : Ω → Rd denotes the velocity, and p : Ω → Rd the pressure. f : Ω → Rd is a given
vector field and gD : ∂Ω→ Rd given boundary data.

Discretization

The Stokes system is discretized using a locally conservative version of the local discontinuous
Galerkin method introduced in [12]. For this method the Stokes equations are first written as a
System of first order partial differential equations with the additional unknown σ = ∇u.

Implementation details

The discontinuous Galerkin space is implemented by the class DiscontinuousGalerkinSpace
(see Section 4.2.5) providing L2 orthonormal basis functions up to order 5. The operators of
the resulting first order system for the unkowns σ,u, p are realized via the concept of discrete
combined operators and passes (see definition 37). For further details we refer to [28].

Figure 15: Pressure (color coded) and velocity field (arrows) for the benchmark problem of the
Stokes system.

Numerical results

As a benchmark problem we look at the Stokes system on Ω = (−1,−1)2 where the data f, gD
are chosen in such a way, that the exakt solution (u, p) is given as

u1(x1, x2) = − ex1(x2 cosx2 + sinx2),

u2(x1, x2) = ex1x2 sinx2,

p(x1, x2) = 2ex1 sinx2.

The stabilization parameters in the local discontinuous Galerkin scheme were chosen as C11 =
h−1, D11 = h,C12 = D12 = 0. The numerical results are taken from the Diploma thesis of [28].
Table 3 shows the numerical error and the experimental order of convergence (EOC) in the case,
where σ,u and p are taken as local polynomials of the same order. A plot of the numerical
results for polynomial order 1 on a triangular grid with 8192 elements is shown in Figure 15.
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Table 3: Convergence study for the LDG approximation with local polynomial order 2 and 3.

Size ||u− uh||2 EOC ||p− ph||2 EOC
128 4.998e− 4 3.23 4.781e− 3 2.27

512 6.282e− 5 3.26 1.134e− 3 2.07

2048 7.889e− 6 3.27 2.810e− 4 2.01

8192 1.150e− 6 3.06 7.638e− 5 1.87

Size ||u− uh||2 EOC ||p− ph||2 EOC
8 3.159e− 3 3.85 1.797e− 2 3.28

32 2.179e− 4 4.30 2.782e− 3 2.69

128 1.370e− 5 4.31 3.584e− 4 2.95

512 9.010e− 7 4.26 4.548e− 5 2.97

7.2 Advanced applications
7.2.1 Free surface shallow water flow

Problem formulation

We solve the 3D free surface Navier-Stokes equations with a hydrostatic pressure assumptions,
a model suitable for shallow flows. Taking into account the orography b and denoting with h
the free surface, the computational domain is

Ω(t) =
{

(x, z)T ∈ Rd : x ∈ Ωx, b(x) < z < b(x) + h(x, t)
}
.

where Ωx ⊂ Rd−1 is a fixed domain over which b and h(·, t) can be represented as functions. The
following system for the 3d velocity field u = (ux, w)T results from a Shallow Water Scaling of
the incompressible Navier-Stokes equations as it is presented in [21]:

∂th+∇x ·
(∫ b+h

b
uxdz

)
= 0 in Ωx,

∂tux + (u · ∇)ux + g∇xh = −g∇xb+ ∂z (µ∂zux) in Ω(t),

∇ · u = 0 in Ω(t),

(17)

where g > 0 is the gravitational constant. For the full set of boundary conditions associated
with this system we refer to [22].

Discretization

The system is solved using a local discontinuous Galerkin approach. Using a sigma transforma-
tion the problem is represented on a fixed domain ω × [0, 1] where ω ⊂ R2.

Implementation details

The method uses the concept of combined operators (see Definition 37), employing three passes:
(h,ux):

1. compute the integrals of the horizontal velocities
∫ b+h
b

uxdz

2. compute the vertical velocity based on the divergence constraint: ∂zw = −∇x · ux

3. compute the advection-diffusion terms in (17)

As discrete function space the DiscontinuousGalerkinSpace (see Section 4.2.5) is used. This
spatial discretization is combined with an implicit-explicit Runge-Kutta solver treating the dif-
fusion terms implicitly to increase the stability of the method (see SemiImplicitOdeSolver in
Section 4.4).
To increase the efficiency of the first two steps of the algorithm a special semi-discrete prism
grid (Figure 16) is used, the grid is structured in the z direction so that the computation of the
vertical integral and transport is easy to compute.
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Figure 16: (left) partitioning of a 3d semi-structured prism grid (middle ) 3d representation of
initial conditions (right) solution to a latter time

Figure 17: Two points in time of a simulation using piecewise linear basis functions on coarse
grid (917760 elements) (left) and on finer grid (3671040 elements) (right)

Numerical results

Figure 17 shows an example computation of a wave moving from left to right hitting a fork in
the river. The convergence of the scheme is demonstrated showing results on two different grids
for two time steps.

7.2.2 Registration of medical images

Problem formulation

We consider the problem of non-rigid, point-to-point registration of two 3D surfaces. In the
example of medical imaging these might represent two femur or human skulls. The goal is to
construct a statistical model from a large set of images.
To avoid restrictions on the topology, we represent the surfaces as a level-set of their signed dis-
tance function, I0 and I1, respectively. Correspondence is established by finding a displacement
field that minimizes the sum of squared difference between the function values as well as their
mean curvature, denoted in the following by H0 and H1. This leads to following (regularized)
minimization problem: J [u] = D[u] + βC[u] + αR[u] with

D[u] =
1

2

∫
Ω

1
QI(x) (I0(x+ u(x))− I1(x))2 dx ,

C[u] =
1

2

∫
Ω

1
QH(x) (H0(x+ u(x))−H1(x)2) dx ,

R[u] =
1

2

3∑
l=1

∫
Ω

|∇ul|2 dx ,

using QF (x) = |∇F0(x)|2 + (F0(x)− F1(x))2.



7.2 Advanced applications 47

(a) Grid structure (b) reference (c) targed (d) registered

Figure 18: A labeling defind on a reference skull (b) is automatically transformed to a target
skull (c) producing (d) using the vector field u. The adaptive grid used to compute u is shown
in (a).

Discretization

We use the local discontinuous Galerkin method to solve the Euler-Lagrange equation corre-
sponding to the minimization problem. These are a system of non-linear elliptic equations of
the form: −∆u = S(u)

Implementation details

We use a pseudo time stepping scheme to obtain the solution to the elliptic problem using a
semi-implicit Runge-Kutta method. The Laplace term is treated implicitly and the non-linear
source term explicitly. The process is initiated using a coarse grid and after a fixed number
of pseudo time steps the grid is locally refined around the zero level set of I0. This iteration
process is repeated and the grid successivly refined. We use the DiscontinuousGalerkinSpace
(see Section 4.2.5) and the implicit-explicit Runge-Kutta solver SemiImplicitOdeSolver (see
Section 4.4).

Numerical results

Figure 19 shows the registration of two skulls. The reference image (I0), the target (I1) and
the warped image (I0(x + u(x))) are shown. To demonstrate the effectivness of the algorithm
the mandible has been labeled on the reference image and the computed vector field u is used
to transform this label to the targed. More details can be found in [17].

(a) Grid structure (b) reference (c) targed (d) registered

Figure 19: A labelling defind on a reference skull (a) is automatically transformed to a target
skull (b) producing (c) using the vector field u.
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A Detailed description of classes in Dune-Fem

In the appendix we give a detailed description of the central classes used in the Dune-Fem tem-
plate library. For every object described in Section 2 there will be an interface class translating
the mathematical functionality into an object using the programming language C++. In the
following we distinguish between static parameters of a class or method, called template param-
eters in C++, and dynamic parameters. As static parameters are known at compile time, the
compiler can use this information to improve the generated code. For each interface class there
is an enumeration of the most important features of the class starting with the template param-
eters, followed by a list of exported types, and finished by the method list of the class. Dynamic
construction parameters are described only for the objects implementing a certain interface.

A.1 Subsets of hierarchic grids

Class 1 (IndexSet)

An IndexSet represents the interface for an index set ΛG (see Definition 11).
Template Parameters
GridPart type of grid part representing G

Interface Methods

int
size(Ê)

returns the size of the index set, i.e., sΛÊ
G

int
index(E)

returns λG(E), the index of the entity E

int
subIndex< c>(E,l)

returns λG(Ec,l), where Ec,l is the l-th subentity with
codimension c of element E

bool
contains(E)

returns true if ΛG provides an index for E, i.e., if
E ∈ G, false otherwise

Class 1 (IndexSet)

Class 2 (PersistentIndexSet −→ IndexSet)

The PersistentIndexSet represents the interface for a persistent index set ΛG (see Defini-
tion 46). This interface class automatically adds itself to the DofManager’s list of persistent
index sets (see Class 30 and Class 34).

Template Parameters
GridPart type of grid part representing G

Interface Methods
void
insertEntity(E)

create an index for the entity E and all its subentities

void
removeEntity(E)

mark the index for E as unused

void
resize()

insert all new elements on a previously adapted grid,
making the index set consistent with the new state

Class 2 (PersistentIndexSet)

Class 3 (ConsecutivePersistentIndexSet −→ PersistentIndexSet)

A ConsecutivePersistentIndexSet represents the interface for a consecutive and persistent
index set ΛG (see Definition 48). In particular, this class provides methods numberOfHoles,
oldIndex, and newIndex implementing the mapping ξnG (see Definition 48).
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Template Parameters
GridPart type of grid part representing G

Interface Methods
bool
compress()

make the index set consecutive according to
Definition 55 and return true if sh > 0, i.e., if the
number of holes was non-zero

int
numberOfHoles()

return the number of holes sh that existed before the
last compression

int
oldIndex(i)

return the old index for hole i, i.e., λold
G (i), 0 ≤ i < sh

int
newIndex(i)

return the new index for hole i, i.e., λnew
G (i), 0 ≤ i < sh

Class 3 (ConsecutivePersistentIndexSet)

Class 4 (GridPart)

A GridPart describes the interface for a grid G (see Definition 4) equipped with a given index
set.

Template Parameters
Traits traits class from which the types are extracted

Exported Types
GridType type of hierarchical grid H from which a subset of

entities is selected
IndexSetType type of index set returned by method indexSet
Codim< c>::IteratorType type of iterator returned by methods begin/end for

codimension c
IntersectionIteratorType type of intersection iterator returned by methods

ibegin/iend

Interface Methods
GridType&
grid()

returns a reference to the hierarchic grid H

IndexSetType&
indexSet()

returns a reference to the index set ΛG

Codim< c>::IteratorType
begin/end< c>()

returns an iterator pair to iterate the half-open interval
[begin, end) which contains all elements of the set Ec

IntersectionIteratorType
ibegin/iend(E)

returns an iterator pair to iterate over all intersections
of E with other codimension 0 entities

void
communicate(dH,if dir)

communicate data on G using the DataHandle dH on
the subset of entities selected by the communication
interface if and the communication direction dir

Class 4 (GridPart)

A.2 Discrete functions

Class 5 (FunctionSpaceInterface)

The FunctionSpaceInterface represents the interface for a function space V Ω,U (see Defini-
tion 16).

Template Parameters
Traits traits class from which the types are extracted

Exported Types and Constants
int dimDomain dim(ΩG)
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Exported Types and Constants
int dimRange dim(U)

DomainFieldType C++ type modeling the field of ΩG , e.g., double
RangeFieldType C++ type modeling the field of U , e.g., double
DomainType C++ type modeling the elements of ΩG , e.g.,

FieldVector< DomainField,dimDomain>
RangeType C++ type modeling the elements of U , e.g.,

FieldVector< RangeField,dimRange>
JacobianRangeType C++ type modeling the Jacobian matrix, e.g.,

FieldMatrix< RangeField,dimDomain,dimRange>
HessianRangeType type of the Hessian of the function, e.g.,

FieldVector< JacobianRangeType, dimRange>
ScalarFunctionSpaceType type of the corresponding scalar function space, i.e.,

this function space with dimRange = 1

Class 5 (FunctionSpaceInterface)

Class 6 (Function)

A Function represents the interface for a function v ∈ V Ω,U .
Template Parameters
FunctionSpace type of function space V Ω,U

Exported Types and Constants
all exported types and constants from FunctionSpace
are forwarded

FunctionSpaceType type of function space V Ω,U

Interface Methods
void
evaluate(x,val)

evaluates val = v(x) for x ∈ Ω

FunctionSpaceType&
space()

returns a reference to the function space V Ω,U

Class 6 (Function)

Class 7 (LocalFunction)

A LocalFunction represents the interface for a local function vE of a function v ∈ V ΩG ,U on an
element E (see Definition 17).

Template Parameters
FunctionSpace type of function space V ΩG ,U

Exported Types and Constants
all exported types and Constants from FunctionSpace
are forwarded

Interface Methods
void
evaluate(λ̂,val)

evaluates the vE in λ̂ ∈ Ê, i.e., val = vE(FE(λ̂))

Class 7 (LocalFunction)

Class 8 (GridFunction −→ Function)

A GridFunction represents the interface for a grid function v ∈ V ΩG ,U (see Definition 17).
Template Parameters
FunctionSpace type of function space V ΩG ,U
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Additional Exported Types
LocalFunctionType type of local function vE

Additional Interface Methods
LocalFunctionType
localFunction(E)

returns a LocalFunction object vE for element E

Class 8 (GridFunction)

Class 9 (BaseFunction)

The class BaseFunction describes the interface for a single base function.
Template Parameters
FunctionSpace type of V ΩG ,U

Exported Types and Constants
all exported types and constants from FunctionSpace
are forwarded

FunctionSpaceType type of V ΩG ,U

Virtual Interface Methods
virtual void
evaluate(v[0],x,val)

v has length 0, so the base function is evaluated, i.e.,
val = ϕ(x)

virtual void
evaluate(v[1],x,val)

v has length 1, so the first derivative in direction v0 of
the base function is evaluated, i.e., val = ∂v0ϕ(x)

virtual void
evaluate(v[2],x,val)

v has length 2, so the second derivative in directions v0,
v1 is evaluated, i.e., val = ∂v0∂v1ϕ(x)

Class 9 (BaseFunction)

Class 10 (BaseFunctionSet)

A BaseFunctionSet represents the interface for a base function set BE (see Definition 18).
Template Parameters
FunctionSpace type of V ΩG ,U

Exported Types and Constants
all types and constants from FunctionSpace are
forwarded

FunctionSpaceType type of V ΩG ,U

Interface Methods
int
numBaseFunctions()

returns the number of base functions, i.e., |BE |

void
evaluate(i,λ̂,val)

evaluates the base function ϕi in λ̂ ∈ Ê, i.e.,
val = ϕi(λ̂)

void
jacobian(i,λ̂,val)

evaluates the Jacobian of the base function ϕi in
λ̂ ∈ Ê, i.e., val = Dϕi(λ̂)

void
hessian(i,λ̂,val)

evaluates the Hessian of the base function ϕi in in
λ̂ ∈ Ê, i.e., val = D2ϕi(λ̂)

Class 10 (BaseFunctionSet)

Class 11 (EvaluationPointList)

An EvaluationPointList represents the interface for a set of points PÊ located in the reference
element Ê. It is needed for the evaluation of base functions and similar operations.
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Template Parameters
GridPart type of GridPart representing the grid G (needed to

determine the type of the Intersection)
int codim dim(ΩG)− dim(Ê) (currently codimension 0 and 1 are

supported)

Exported Types and Constants
FieldType C++ type modeling the field of Ê
int dimension dim(Ê)

CoordinateType type of a point λ̂ ∈ Ê, e.g.,
FieldVector< FieldType,dimension>

LocalCoordinateType type of local evaluation points (for codimension 1 only)

Interface Methods
int
nop()

returns the number of points in the set, i.e., |PÊ |

CoordinateType&
point(i)

returns λ̂i, the coordinates for point i

LocalCoordinateType&
localPoint(i)

returns the local coordinates for point i, (for a face
point list, the coordinates are local with respect to the
face)

QuadraturePointWrapperType
operator[](i)

returns the evaluation point (λ̂i, i), required for
specialization of base function evaluations in terms of
caching

int
order()

returns order k for which a quadrature based on PÊ

would be exact
size_t
id()

returns a unique id for PÊ , needed to identify cache
lines

Class 11 (EvaluationPointList)

Class 12 (ElementQuadrature −→ EvaluationPointList)

The class ElementQuadrature inherits the class EvaluationPointList and represents the in-
terface for a quadrature QÊ
Note that this quadrature interface differs slightly from the interface presented in Dune-Grid.

Template Parameters
see EvaluationPointList (Class 11)

Constructors for codimension 0
ElementQuadrature(E,k) create a quadrature (codimension c = 0) exact up to

order k an element E
Constructors for codimension 1
ElementQuadrature(G,e,k,flag) create a face quadrature (codimension c = 1) exact up

to order k for an intersection e; the coordinates are
given with respect to the inside entity (flag = INSIDE)
or the outside entity (flag = OUTSIDE)

Additional Interface Methods
FieldType
weight(i)

returns the weight ωi for point λ̂i

Class 12 (ElementQuadrature)

Class 13 (CachingPointList −→ EvaluationPointList)

A CachingPointList represents a list of points for evaluation of base functions implementing
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the interface of EvaluationPointList using a caching mechanism. Caching can only be used
in combination with a CachingStorage (see Class 15).

Template Parameters
see EvaluationPointList (Class 11)

Additional Interface Methods
int
cachingPoint(i)

returns the number of the caching point of point i,
which might be twisted according to a face twist

Class 13 (CachingPointList)

Class 14 (CachingQuadrature −→ CachingPointList, ElementQuadrature)

A CachingQuadrature represents a quadrature implementing the CachingPointList, thus pro-
viding caching for base function evaluations and the interface of a ElementQuadrature for nu-
merical integration. Caching can only be used in combination with a CachingStorage (see
Class 15).

Template Parameters
see EvaluationPointList (Class 11)

Constructors
see ElementQuadrature (Class 12)

Class 14 (CachingQuadrature)

Class 15 (CachingStorage)

A CachingStorage implements the BaseFunctionSet interface. The base functions are evalu-
ated only once and the values are stored in a look-up table for later use. Evaluations of base
functions in arbitrary points are forwarded to the real implementation of the base function.

Template Parameters
FunctionSpace type of V ΩG ,U

Exported Types and Constants
all exported types and constants from FunctionSpace
are forwarded

Constructors
CachingStorage(f) Creates a CachingStorage, creating the base function

objects by use the base function factory f

Class 15 (CachingStorage)

Class 16 (DofMapper)

The DofMapper represents the interface for a DoF mapper µG (see Definition 18).
Template Parameters
Traits traits class from which the types are extracted

Exported Types
EntityType type of (codimension 0) entity E for which the

mapping is provided
DofMapIteratorType type of iterator for the local to global DoF map

returned by begin/end

Interface Methods
int
size()

returns the number of global DoFs, i.e., |BG |
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Interface Methods
int
maxNumDofs()

returns the maximal number of local DoFs on an entity

int
numDofs(E)

returns the number of local DoFs on entity E, i.e., |BE |

int
mapToGlobal(E,l)

returns the global index of the local DoF l on
codimension 0 entity E, i.e., µE(l); this includes local
DoFs associated with subentities

DofMapIteratorType
begin/end(E)

returns an iterator pair for the local to global DoF map
µE(0), . . . , µE(|BE | − 1)

int
mapEntityDofToGlobal(E,l)

returns the global index of the l-th DoF associated
with entity E of arbitrary codimension; in contrast to
mapToGlobal, this mapping only includes DoFs
associated with E

Interface Method for use in ManagedDofStorage (see Class 33)
int
numBlocks()

returns the number of separate blocks in the DoF
vectors

int
numberOfHoles(b)

returns the number of holes in block b, i.e., nb
h

int
oldIndex(b,k)

returns the old index for hole k in block b, i.e.,
µold
G (b, k), 0 ≤ k < nb

h

int
newIndex(b,k)

returns the new index for hole k in block b, i.e.,
µnew
G (b, k), 0 ≤ k < nb

h

void
update(oversize)

update insertion points for blocks3; if oversize is true,
the size is overestimated to avoid unnecessary memory
movement; this method is used in the resize and
dofCompress methods of a ManagedDofStorage (see
Class 33)

int
oldOffSet(b)

returns the old offset (offsets change when update is
called) of block b

int
offSet(b)

returns current offset of block b

Class 16 (DofMapper)

Class 17 (DiscreteFunctionSpace −→ FunctionSpace)

A DiscreteFunctionSpace represents the interface for a discrete function space DVG (see Defi-
nition 18).

Template Parameters
Traits traits class from which the types are extracted

Additional Exported Types and Constants
FunctionSpaceType type of function space V ΩG ,U

GridPartType type of grid part representing G
IndexSetType type of index set ΛG

MapperType type of DoF mapper µG
int polynomialOrder polynomial order of the base functions

Interface Methods
GridPartType&
gridPart()

returns a reference to the grid part representing G

IndexSetType&
indexSet()

returns a reference to the index set ΛG

3This is only necessary for DoF mappers with more than one block such as DoF mappers for higher order
Lagrange spaces or hybrid grids.
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Interface Methods
MapperType&
mapper()

returns a reference to the DoF mapper µG

IteratorType&
begin/end()

returns a pair of iterators to traverse the half-open
interval [begin, end) containing all elements of G

BaseFunctionSetType
baseFunctionSet(E)

returns the base function set BE

int
order()

returns polynomial order of the discrete function space,
if available, otherwise −1

void
communicate(uG)

communicates data for the discrete function uG with
the appropriate communication interface, direction,
and operation, e.g., += or =, on the data

void
communicate(uG,γ)

communicates data for the discrete function uG with
the appropriate communication interface and direction;
the user-defined operation γ is used to combine the
data

InterfaceType
communicationInterface()

returns the default communication interface for this
discrete function space

CommunicationDirection
communicationDirection()

returns the default communication direction for this
discrete function space

Class 17 (DiscreteFunctionSpace)

Class 18 (LagrangeDiscreteFunctionSpace −→ DiscreteFunctionSpace)

This class implements the Lagrange discrete function space described in Definition 26.
Note that the basic structure for all implemented discrete function spaces is exactly the same
and their description is therefore skipped.

Template Parameters
FunctionSpace type of V ΩG ,U

GridPart type of grid G
int polynomialOrder polynomial order of the basis functions
Storage base function storage, which can be either

CachingStorage (which is the default value) or
SimpleStorage

Constructors
LagrangeDiscreteFunctionSpace
(G)

creates a Lagrange discrete function space on G; the
default communication interface and direction are set
to InteriorBorder_InteriorBorder_Interface and
ForwardCommunication

LagrangeDiscreteFunctionSpace
(G,if,dir)

creates a Lagrange discrete function space on G; the
default communication interface and direction are set
to if and dir

Class 18 (LagrangeDiscreteFunctionSpace)

Class 19 (DiscreteFunction −→ GridFunction)

The DiscreteFunction represents the interface for a discrete function uG ∈ DG (see Defini-
tion 19).

Template Parameters
Traits traits class from which the types are extracted

Exported Types
DiscreteFunctionSpaceType type of discrete function space DG
LocalFunctionType type of local discrete function uE
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Exported Types
DoFType type of the DoFs; this should equal the

RangeFieldType from the discrete function space
DofIteratorType type of iterator over over all DoFs of the discrete

function
Interface Methods
string
name()

returns the name of the discrete function

int
size()

returns the number of DoFs stored for the discrete
function, i.e., |BG |

DofIteratorType
dbegin/dend()

returns an iterator pair over the interval [begin, end)
containing all DoFs on this discrete function

LocalFunctionType
localFunction(E)

returns the local discrete function uE for the
(codimension 0) entity E

ThisType&
operator+=(vG)

adds the function vG ∈ DG to uG

ThisType&
operator-=(vG)

substracts the function vG ∈ DG from uG

ThisType&
operator*=(α)

multiplies uG by a scalar α

ThisType&
operator/=(α)

divides uG by a scalar α

void
addScaled(vG , α)

adds α · vG to uG , where vG ∈ DG is a discrete function
and α is a scalar

void
assign(vG)

sets uG = vG

void
clear()

sets uG = 0

void
enableDofCompression()

enables compression of the internal DoF storage
(automatically done when discrete function is managed
by a RestrictionProlongation object during grid
adaptation, see Class 39)

Class 19 (DiscreteFunction)

Class 20 (LocalDiscreteFunction −→ LocalFunction)

The LocalDiscreteFunction represents the interface for a local function uE of uG (see Defini-
tion 20).

Template Parameters
Traits traits class from which the types are extracted

Exported Types and Constants
All types and constant from FunctionSpace are
forwarded

EntityType type of codimension 0 entity E
BaseFunctionSetType type of base function set BE

DiscreteFunctionSpaceType type of discrete function space DG
Interface Methods
int
numDofs()

returns |IE |, i.e., the number of local DoFs (see
Definition 20)

RangeFieldType&
operator[](i)

return a reference to local DoF ui

BaseFunctionSetType&
baseFunctionSet()

returns a reference to the base function set BE
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Interface Methods
EntityType&
entity()

returns a reference to the entity E

void
evaluate(λ̂,val)

evaluates uE in λ̂ ∈ Ê, i.e., val = uE(FE(λ̂)); for a
localized base function set, this can be implemented by
val =

∑
i uiϕ̂i(λ̂)

void
jacobian(λ̂,val)

evaluates the Jacobian of uE , i.e., val = DuE(FE(λ̂));
for a localized base function set, this can be
implemented by val =

∑
i ui

(
DF−T (λ̂) Dϕ̂i(λ̂)

)
ThisType&
operator+=(vE)

adds the local function vE to uE ; this may affect local
functions on neighboring elements

ThisType&
operator-=(vE)

substracts the local function vE from uE ; this may
affect local functions on neighboring elements

void
axpy(α,vE)

adds α · vE to uelem, where vE is a local function and
α is a scalar; this may affect local functions on
neighboring elements

void
axpy(λ̂,f)

adds f · ϕi(λ̂) to each ui; this may affect local
functions on neighboring elements

void
axpy(λ̂,j)

adds j · ∇ϕi(λ̂) to each ui; this may affect local
functions on neighboring elements

void
axpy(λ̂,f,j)

adds f · ϕi(λ̂) + j · ∇ϕi(λ̂) to each ui; this may affect
local functions on neighboring elements

void
assign(vE)

sets uE = vE ; this may affect local functions on
neighboring elements

void
clear()

sets uE = 0; this may affect local functions on
neighboring elements

Class 20 (LocalDiscreteFunction)

A.3 Discrete spatial operators

Class 21 (Operator)

The class Operator prescribes the interface for a general operator L : V −→W that maps from
one function space V to another function space W .

Template Parameters
DomainField C++ type modeling the field of the domain V
RangeField C++ type modeling the field of the range W
Domain type of an element of the domain V
Range type of an element of the range W

Interface Methods
virtual void
operator()(v, w)

apply the operator to v ∈ V and store result in w ∈W ,
i.e., L(v) = w

Class 21 (Operator)
In Dune-Fem currently the following projection operators, all fulfilling the Operator interface,
are implemented

• L2Projection implementing the L2 projection described in Definition 32.

• HdivProjection implementing the projection of a discrete DG velocity such that the
velocity field is continuous into normal direction across element faces (see [7]).

• LagrangeProjection implementing the projection of (possibly discontinuous) data into
an appropriate Lagrange space and thus making it continuous. For the special case of
continuous data, this coincides with the Lagrange interpolation (see Definition 31).
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Class 22 (InverseLinearOperator −→ Operator)

Given a linear Operator L, the class InverseLinearOperator describes the interface for the
inverse operator L−1 : DG −→ DG (see Definition 33).

Template Parameters
DiscreteFunction type of element uG ∈ DG
Operator type of linear operator L

Constructors
InverseLinearOperator
(L,r,ε,m,verbose)

create an operator inverting L; r is an error reduction
that should be achieved, ε is a limit on the total error
that should be achieved, m is the maximum number of
iterations that should be done, and verbose is a flag for
verbosity of the solver

Interface Methods
virtual void
operator()(vG , uG)

solve the system L(uG) = vG

Class 22 (InverseLinearOperator)

Class 23 (OEMMatrix)

Any matrix that shall be inverted using the OEM solvers has to satisfy the interface OEMMatrix.
Interface Methods
void
multOEM(v,w)

multiplies the matrix by v and stores result in w; both,
v and w are of type double*

double
ddotOEM(v,w)

evaluates the Euclidian scalar product v · w between
the two vectors v ad w, which are of type double*

void
precondition(v,w)

applies the preconditioning method to v and stores the
result in w; both, v and w are of type double*

Class 23 (OEMMatrix)

Class 24 (ISTLMatrix)

Any matrix that shall be inverted using the solvers from Dune-Istl has to satisfy the interface
ISTLMatrix.

Exported Types
MatrixAdapterType type of matrix adapter fulfilling the MatrixAdapter

interface from Dune-Istl.
Interface Methods
MatrixAdapterType
matrixAdapter()

returns a matrix adapter that can be plugged into a
linear solver provided by Dune-Istl. The provided
implementation of Dune-Fem also stores the
preconditioning fulfilling the Preconditioner interface
from Dune-Istl and a proper scalar product of type
ScalarProduct from Dune-Istl.

Class 24 (ISTLMatrix)

Class 25 (LocalLinearOperator)

The class LocalLinearOperator describes the interface for local matrices (see Definition 35).
Template Parameters
Traits traits structure holding all necessary type information
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Interface Methods
void
init(E,Ee)

initialize the local linear operator for a pair of entities,
for example, element E and neighbor Ee over
intersection e

int
rows()

returns |IE |, the number of rows of the local linear
operator which is the same as the number of base
functions from DomainBaseFunctionSet

int
columns()

returns |IEe |, the number of columns of the local linear
operator which is the same as the number of base
functions from RangeBaseFunctionSet

void
clear()

set all entries to zero

void
resort()

if the matrix implementation provides this feature,
then resort appearance of entries in ascending order

void
add(r,c,v)

add v to entry (r, c), r ∈ {0, . . . , |IE | − 1},
c ∈ {0, . . . , |IEe | − 1}

void
set(r,c,v)

set entry (r, c) to value v, r ∈ {0, . . . , |IE | − 1},
c ∈ {0, . . . , |IEe | − 1}

RangeFieldType
get(r,c)

return value of entry (r, c), r ∈ {0, . . . , |IE | − 1},
c ∈ {0, . . . , |IEe | − 1}

void
scale(v)

scale all entries of the local linear operator with value v

void
multiplyAdd(fd, fr)

evaluate fr = L · fd where fd is a local function of a
discrete function from DomainSpace and fr a local
function of a discrete function from RangeSpace

void
unitRow(r)

set all entries of row r to zero except the diagonal entry
which is set to 1, r ∈ {0, . . . , |IE | − 1}

DomainSpace&
domainSpace()

return reference to DomainSpace

RangeSpace&
rangeSpace()

return reference to RangeSpace

DomainBaseFunctionSet&
domainBaseFunctionSet()

return reference to the base function set for
DomainEntity

RangeBaseFunctionSet&
rangeBaseFunctionSet()

return reference to the base function set for
RangeEntity

Class 25 (LocalLinearOperator)

Class 26 (LinearOperator −→ Operator)

The class LinearOperator describes the interface for linear discrete operators in Dune-Fem
(see Definition 34). These linear discrete operators are representable by a matrix.

Template Parameters
DomainSpace type of discrete function space describing the domain of

the operator
RangeSpace type of discrete function space describing the range of

the operator
Traits traits structure holding information about the local

stencil of the matrix
Interface Methods
LocalLinearOperator
localLinearOperator(E,N)

return local linear operator belonging to entity
combination E,N , where global DoF numbers from E
correspond to the rows of the matrix and the global
DoF numbers from N to the column numbers.

void
clear()

set all entries of internal matrix to zero
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Interface Methods
void
reserve()

reserve memory for internal matrix

Class 26 (LinearOperator)

Class 27 (LinearOperatorImplementation −→ LinearOperator)

Here we present the constructor for a linear operator which is the same for all implementations
in Dune-Fem (see also Definition 34).

Constructors
LinearOperatorImplementation
(DV
G , DW

G )
common constructor for linear operators, the domain
discrete function space DV

G describes the unknowns for
the rows and the range discrete function space DW

G the
unknowns corresponding the the columns

Class 27 (LinearOperatorImplementation)

Class 28 (Pass −→ Operator)

The class Pass provides an interface for passes of combined operators (see Definition 37).
Template Parameters
Traits traits class containing the types of the range and

destination discrete function spaces
PreviousPass type of the previous pass in the pass list
passId integer ID of this pass

Constructors

Pass(previousPass)
implementation of the previous pass

Interface Methods
void
operator() (vG , uG)

evaluate all previous passes in the list and use the
result for the computation of this pass

Class 28 (Pass)

A.4 Parallelization and data exchange

Class 29 (CommunicationManager)

The CommunicationManager is in charge of doing communications in parallel simulations. We
group all communications for discrete functions belonging to the same discrete function space
since the communication pattern is in most cases the same. The user still has the flexibility to
exchange the data in a different way if needed. Each discrete function space defines a default
communication pattern and an operation to be formed on the data.

Template Parameters
DiscreteFunctionSpace discrete function space DG that describes discrete

function the communication is done for
Interface Methods
void
exchange(uG)

exchange data of discrete function uG according to the
space’s default communication behavior and default
operation type
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Interface Methods
void
exchange(uG,γ)

exchange data of discrete function uG according to the
space’s default communication behavior and an
operation γ. For example γ could be a += (summation)
or = (copying) or other operations.

Class 29 (CommunicationManager)

A.5 Adaptation and load-balancing

Class 30 (ManagedIndexSet)

The DofManager needs to know all persistent and consecutive persistent index sets depending on
the grid instance H the DofManager is responsible for. Therefore, a list of ManagedIndexSet are
stored. These are simple wrapper classes storing references to the real index sets. The interface
methods are realized via virtual methods. A ManagedIndexSet is created by the call to the
method addIndexSet of the DofManager.

Interface Methods
virtual void
resize()

resizes the index set to current state of the grid

virtual bool
compress()

compresses the index set; returns true if the index set
was not in compressed state

void
read(filename,n)

reads back the index set for time step n from a file
named filename

void
write(filename,n)

writes the index set for time step n to a file named
filename

bool
increaseReference(ΛG)

returns true if ΛG coincides with this index set and
increases the internal reference counter accordingly

bool
decreaseReference(ΛG)

return true if ΛG coincides with this index set and no
other references exist

Class 30 (ManagedIndexSet)

Class 31 (DofStorageInterface)

The DofStorageInterface is the interface for an unmanged DoF storage.
Interface Methods
virtual std::string
name()

returns the name of DoF storage, i.e., the name of the
discrete function

virtual void
enableDofCompression()

enables DoF compression for this DoF storage, see
DiscreteFunction (Class 19)

Class 31 (DofStorageInterface)

Class 32 (ManagedDofStorageInterface −→ DofStorageInterface)

The ManagedDofStorageInterface inherits the DofStorageInterface and provides an inter-
face for a DoF storage that should be managed by the DofManager. This means during the
adaptation process the memory of these DoF storages is resized and compressed if necessary (see
also Definition 57).

Interface Methods
virtual int
size()

return current size of DoF array

virtual void
resize()

resize the memory according to the provided size from
the corresponding DoF mapper
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Interface Methods
virtual void
reserve(s)

reserve memory for at least s entries

virtual void
dofCompress()

Compress DoF array by moving entries from rear
positions to unused positions ahead. This is only
executed if the underlying index set is consecutive (see
Definition 12, 57 and Example 58).

virtual void
enableDofCompression()

enables DoF compression for this DoF storage. This is
for example done for a DoF storage that is passed to a
RestrictProlongDefault object or marked for
redistribution during load balancing (see Class 36).

virtual size_t
usedMemorySize()

returns number of bytes of the memory occupied by
this memory object

Class 32 (ManagedDofStorageInterface)

Class 33 (ManagedDofStorage −→ ManagedDofStorageInterface)

The ManagedDofStorage inherits the ManagedDofStorageInterface and provides an imple-
mentation for the creation of a DoF storage that is managed by the DofManager.

Template Parameters
Grid type of the hierarchal grid H (for access to the

DofManager)
Mapper type of the DoF mapper for this storage
DofArray type of DoF container, e.g., double* or

std::vector< double>

Constructors
ManagedDofStorage(H,µG,name) creates a DoF container of type DofArray for the

number of unknowns obtained from µG and makes it
known to the DofManager by calling its addDofStorage
method; the container is automatically removed from
the DofManager on destruction

Additional Interface Methods
DofArray&
getArray()

returns a reference to the DoF storage

void
moveToRear()

move memory blocks to rear position to make insertion
possible

void
moveToFront()

move memory blocks to front position to return to
compressed state

Class 33 (ManagedDofStorage)

Class 34 (DofManager)

The DofManager is an implementation for the central management of memory needed for the
storage of user data, i.e., the DoFs and index sets created. To ensure that only one instance of
a DofManager for a hierarchic grid H exists, the DofManager can only be accessed via a static
method [none]instance(H) which implements the singleton per unique key concept. Given
a hierarchic grid H, the method instance returns a reference to the associated DofManager.

Template Parameters
Grid type of the hierarchic grid H

Exported Types
GridType type of the hierarchic grid H
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Interface Methods
void
addIndexSet(ΛG)

makes a persistent index set ΛG known to the
DofManager; this method is automatically called on
construction of a pesistent index set

void
removeIndexSet(ΛG)

removes a persistent index set ΛG from DofManager’s
internal list; this method is automatically called on
destruction of a persistent index set

void
addDofStorage(ds)

adds a DoF storage ds to the DofManager’s list of
managed DoF storages

void
removeDofStorage(ds)

removes a DoF storage ds from DofManager’s list of
managed DoF storages

void
resize()

triggers the resize process; first all index sets are
resized, then all managed DoF storages

void
compress()

triggers the compression process; first for all index sets
are compressed, then all managed DoF storages

void
writeIndexSets(filename,n)

writes all managed index sets for time step n to a file
named filename

void
readIndexSets(filename,n)

reads back all index sets for time step n from a file
named filename

int
sequence()

for a hierarchic grid Hn, the sequence number n is
returned; this feature will directly be supported by
future versions of the Dune grid interface

Class 34 (DofManager)

Class 35 (LoadBalancerInterface)

The LoadBalancerInterface represents the interface for the load-balancing process described
in Definition 40.

Interface Methods
void
loadBalance()

triggers the recalculation of the master decomposition

Class 35 (LoadBalancerInterface)

Class 36 (LoadBalancer −→ LoadBalancerInterface)

The class LoadBalancer implements the LoadBalancerInterface.
Template Parameters
Grid type of hierarchical grid H to be dynamically load

balanced
Constructors
LoadBalancer(H) creates a LoadBalancer for the hierarchical grid H
LoadBalancer(H,rp) creates a LoadBalancer for the hierarchical grid H and

adds all functions given by the restriction/prolongation
operator rp

Additional Interface Methods
void
addDiscreteFunction(uG)

add uG to list of discrete functions that are
redistributed together with the recalculatiuon of the
master decomposition. DoF compression is enabled for
uG .

Class 36 (LoadBalancer)
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Class 37 (AdaptationManagerInterface −→ LoadBalancerInterface)

The AdaptationManagerInterface represents the interface for the adaptation process described
in Definition 40.

Template Parameters
Grid type of hierarchical grid H for which adaptation is done

RestProlOperator type of the restriction and prolongation operator that
transfers the data from Hn to Hn+1, this class has to
satisfy the RestrictionProlongation.

Interface Methods
bool
adaptive()

returns true if adaptation is possible for the given grid
H and also enabled

void
adapt()

trigger the adaptation process which will convert Hn

into Hn+1 and also trigger the restriction and
prolongation process. See Description 74 for details.

Class 37 (AdaptationManagerInterface)

Class 38 (AdaptationManager −→ SerialAdaptationManager, LoadBalancer)

The AdaptationManager class inherits from the SerialAdaptationManager as well as from
LoadBalancer. A reimplementation of the method adapt is done.

Template Parameters
Grid type of hierarchical grid H for which adaptation is done

RestProlOperator type of the restriction and prolongation operator that
transfers the data from Hn to Hn+1; this class has to
satisfy the RestrictionProlongation interface.

Reimplemented Methods
void
adapt()

calls first the adapt method from
SerialAdaptationManager doing the grid adaptation
including restriction and prolongation and second the
loadBalance method from LoadBalancer to trigger the
load balancing process

Class 38 (AdaptationManager)

Class 39 (RestrictionProlongation)

The RestrictionProlongation represents the interface for a local restriction and prolongation
operator.

Template Parameters
DiscreteFunction type of DiscreteFunction uG the restriction and

prolongation is done for

Interface Methods
void
restrictLocal(Ef, E, flag)

apply local restriction operator for Ef (see Definition
42), if flag is true then initialization of uEf is done

void
prolongLocal(E, Es, flag)

apply local prolongation operator for Es (see Definition
44), if flag is true then initialization of uEs is done

void
setFatherChildWeight(ω)

set weight of |e|/|E| where e ∈ C1
E(E) and the hierarchy

grid contains only one geometry type, for example only
simplicial elements, otherwise the weight is calculated
new for each pair (e, E)

Class 39 (RestrictionProlongation)
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Class 40 (RestrictProlongDefault −→ RestrictionProlongaion)

The RestrictProlongDefault class implements the RestrictionProlongation interface. For
each discrete function space implementation there is one such default implementation of the
RestrictionProlongation interface.

Template Parameters
DiscreteFunction type of DiscreteFunction uG the restriction and

prolongation is done for

Constructors
RestrictProlongDefault( uG ) Create restriction/prolongation operator for the

discrete function uG . DoF compression for uG in
enabled hereby.

Class 40 (RestrictProlongDefault)

A.6 Time discretization

Class 41 (TimeProvider)

The class TimeProvider defines the interface for classes providing a simulation time, a time step
size, CFL number and so on, for the use in non-stationary simulations.

Template Parameters
CollectiveCommunication type of collective communication for synchronization of

global information, e.g., time step size

Interface Methods
int
timeStep()

returns n

double
time()

returns tn

double
deltaT()

returns ∆tn

void
provideTimeStepEstimate(∆tLG)

provides a time step estimate ∆tLG given by
stabilization criteria from the space discretization
operator LG

void
init()

initializes time provider with a large number as time
step size

void
init(∆t)

initializes time provider with given ∆t

void
next()

advances to next time step; this involves a global
communication to compute the minimal global time
step size

double
factor()

returns ccfl

Class 41 (TimeProvider)

Class 42 (SpaceOperator −→ Operator)

The class SpaceOperator inherits the Operator class, specifying that V = W , i.e., LG : V −→
V for some discrete function space V . This operator also represents the interface for spatial
discretization operators used with ODE solvers.

Template Parameters
DiscreteFunction type of discrete function that this operator is applied

to, i.e., uG ∈ DG
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Exported Types
SpaceType type of discrete function space DG extracted from

DiscreteFunction

Interface Methods
virtual void
operator()(vG , uG)

applies the operator to vG ∈ DG and stores the result in
uG ∈ DG , i.e., LG(vG) = uG

SpaceType&
space()

return reference to discrete function space DG

void
setTime(t)

set current simulation time t to operator LG

double
timeStepEstimate()

return maximum possible time step size ∆t that
ensures a stable explicit Euler solver

Class 42 (SpaceOperator)

Class 43 (OdeSolver)

The class OdeSolver describes the interface for an ODE solver.
Template Parameters
Destination type of discrete function that this ODE solver is

applied to

Interface Methods
void
initialize(uG)

initialize ODE solver for example to determine an
initial time step estimate

void
solve(uG)

solve ∂tuG = LG(uG). uG is overwritten with the result
of the solution process.

Class 43 (OdeSolver)

Class 44 (ODE solvers −→ OdeSolver)

The ODE solvers ExplicitRungeKuttaSolver, ExplicitOdeSolver, or ImplicitOdeSolver
have exactly the same constructor parameter list. For the SemiImplicityOdeSolver two instead
of one spatial discretization operator has to be provided.

Template Parameters
Destination type of discrete function that this ODE solver is

applied to
Constructors for ExplicitRungeKuttaSolver, ExplicitOdeSolver, and
ImplicitOdeSolver
ODESolver(LG, tp, k, flag) Create an ODE solver. LG is the spatial discretization

operator, tp is the TimeProvider managing simulation
time and time step size, k describes the desired order of
the solver, and flag is a verbosity flag which defaults
to false

Constructors for SemiImplicitOdeSolver
SemiImplicityOdeSolver
(Lexpl, Limpl, tp, k, flag)

Create an SemiImplicityOdeSolver. Lexpl is the
explicit spatial discretization operator and Limpl

represents the implicit spatial discretization operator.
tp is the TimeProvider managing simulation time and
time step size, k describes the desired order of the
solver, and flag is a verbosity flag which defaults to
false

Class 44 (ODE solvers)
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