Construction of High Order Finite-Element Spaces a proof of concept...

ANDREAS DEDNER

Mathematics Institute, University of Warwick, Coventry UK A.S.Dedner@warwick.ac.uk, www2.warwick.ac.uk/fac/sci/maths/people/staff/andreas_dedner

> Co-worker: Martin Nolte

Chemnitz, 27th of September 2011

Overview

A finite element discretization requires

- **1** construct partitioning \mathcal{G} of Ω
- **2** construct basis \mathcal{B} of $V_{\mathcal{G}}$
- **3** implement of quadratic forms $a(\cdot, \cdot)$
- 4 solve linear system (find root, evolve in time)

Need to:

- 1 evaluate basis function and derivatives
- 2 efficient evaluation in given set of points (quadrature)
- **3** associate basis functions with subentities (mapper)
- 4 interpolation or projection into discrete function space

Overview

Given: grid \mathcal{G} with entities E and a small set of reference elements \mathcal{R} Assumption: for each entity E there is a reference element $\hat{E} \in \mathcal{R}$ from a small set \mathcal{R} and a bijective smooth mapping $F_E: \hat{E} \to E$

Values of basis functions are needed on given set of points in *R* (can be computed at start up).

Overview

Finite element construction is based on families of finite elements

 (R, V_R, Λ_R)

where

- *R* is from a small set of reference elements \mathcal{R}
- V_R is a finite dimensional function space
- $\Lambda_R = (\lambda_i)$ is a basis of the dual to V_R

The construction now requires

1 building the primal basis, i.e., a basis $\mathcal{B}_R = (\phi_i)_i$ satisfying

$$\lambda_j(\phi_i) = \delta_{ij}$$
.

2 by associating each functional $\lambda_j \in \Lambda_R$ with a subentity (edge, face,...) of *R* a global space is build.

Goal

Use this (abstract) idea to automatically construct finite-element spaces of arbitrary order on arbitrary reference elements, *without coding polynomials*.

Why bother?

- **1** Basis function are often quite tedious to code, e.g., 5th order Raviart-Thomas on prisms.
- 2 Want to compare different choices of functionals, i.e., same sapce V_R different dual basis.
- 3 We often use matrix free methods (in implicit ODE solvers for example) so the conditioning of the mass matrix is important (no preconditioning).
- **4** Want construction also in higher dimension.
- **5** We found it interesting...

Construction based on dual basis or nodal variables $\Lambda_R = (\lambda_j)_j$ i.e. the shape functions $\mathcal{B}_R = (\phi_i)_i$ satisfy

$$\lambda_j(\phi_i) = \delta_{ij}$$
.

Idea for Construction:

Given

1 any basis $\boldsymbol{B}_{R} = (\psi_{1}, \dots, \psi_{N_{R}})$ of the space V_{R}

2 set of nodal variables $\Lambda_R = (\lambda_1, \ldots, \lambda_{N_R})$

Then the basis $\mathcal{B}_R = \{\phi_1, \ldots, \phi_{N_R}\}$ with $\lambda_j(\phi_i) = \delta_{ij}$ is given by

$$\mathcal{B}_R = (A_R)^{-T} \boldsymbol{B}_R$$
, with $A_R = (\lambda_j(\psi_i))_{ij} \in \mathbb{R}^{N_R \times N_R}$

Similar: Orthonormal basis functions:

Given

- **1** any basis $\boldsymbol{B}_R = (\psi_1, \dots, \psi_{N_R})$ of the space V_R
- **2** scalar product $a_R(\cdot, \cdot)$

Seek orthonormal shape functions $\mathcal{B}_R = (\phi_i)_i$ w.r.t. a_R , given by

$$\mathcal{B}_R = (A_R)^{-T} \boldsymbol{B}_R, \quad ext{with} \quad A_R A_R^T = M_R := \left(a_R(\psi_j, \psi_i) \right)_{ij}.$$

Functionals are now given by $\lambda_i(u) = a(u, \varphi_i)$.

Shape function sets

$$\mathcal{B}_R = (A_R)^{-T} \boldsymbol{B}_R$$
, with $A_R = (\lambda_j(\psi_i))_{ij} \in \mathbb{R}^{N_R \times N_R}$

1 Description of set of reference elements \mathcal{R} .

2 Description of pre-basis $\boldsymbol{B}_R = (\psi_1, \dots, \psi_{N_R})$

3 Description of nodal variables $\Lambda_R = (\lambda_1, \dots, \lambda_{N_R})$

Finally: stable construction of $(A_R)^{-T}$.

Example: Lagrange spaces based on Lagrange interpolation $\lambda_i^p(u) = u(\mathbf{x}_i^p)$ with point set (\mathbf{x}_i^p) , \mathbf{B}_R is set of monomials (or bimonomials).

Equidistant and Lobatto type point set (Luo and Pozrikidis, 2006).

Reference elements

Generic Reference Elements

Given set of reference elements \mathcal{R}^d with $R \subset \mathbb{R}^d$, $R \in \mathcal{R}^d$ we define $\mathcal{R}^{d+1} = \{ R^{\mid}, R^{\circ} \colon R \in \mathcal{R}^{d+1} \}$ where for $R \in \mathbb{R}^d$: $R^{|} = \{(x,z) \colon z \in [0,1], x \in R\}$ $R^{\circ} = \{(x(1-z),z) \colon z \in [0,1], x \in R\}$ **D**00 For d = 0 we set $\mathcal{R}^{0} = \{P\} \text{ with } P = \{0\} \in \mathbb{R}^{0}.$ **Note:** R° is the Duffy transform of *R*.

Recursion also provides numbering of subentities \hat{e} and corresponding mappings from $\hat{e} \rightarrow R$.

Examples

All embeddings of higher codimension subentities respect ordering.

Pre Basis

Ansatz: we assume each base function is a polynomial in d variables. **Example on simplex topology** $S^0 = P$, $S^{d+1} = (S^d)^\circ$ We construct Ψ_k^d of all monomials in d variables of exactly order k: dim. monomials $\Psi_{0}^{0} = 1$ 0 $\Psi_{0}^{1} = 1$ $\Psi_1^{\tilde{1}} = x$ $\Psi_2^{1} = x^2$ 1 $\Psi_0^2 = 1$ $\Psi_1^2 = \{x, y\}$ 2 $\Psi_2^2 = \{x^2, xy, y^2\}$

Ansatz: we assume each base function is a polynomial in d variables. **Example on simplex topology** $S^0 = P$, $S^{d+1} = (S^d)^\circ$ We construct Ψ^d_{ι} of all monomials in *d* variables of exactly order *k*: dim. monomials recursion relation $\Psi_{0}^{0} = 1$ $\Psi_{0}^{0} = 1$ 0 $\begin{aligned}
 & \Psi_0^0 &= 1 \\
 & \Psi_1^0 &= \emptyset \quad x \Psi_0^0 &= x \\
 & \Psi_2^0 &= \emptyset \quad x \Psi_1^0 &= \emptyset \quad x (x \Psi_0^0) &= x^2
 \end{aligned}$ $\Psi_{0}^{1} = 1$ $\Psi_{1}^{1} = x$ 1 $\Psi_{2}^{1} = x^{2}$ $\Psi_{0}^{1} = 1$ $\Psi_0^2 = 1$ $\Psi_{1}^{1} = x$ $\Psi_1^2 = \{x, y\}$ 2 $\Psi \Psi_0^1 = v$ $\Psi_2^1 = \{x^2, xy, y^2\}$ $\Psi_{2}^{1} = x^{2}$ $\mathbf{v}\Psi_1^1 = xy$ $\mathbf{v}(\mathbf{v}\Psi_{0}^{1}) = \mathbf{v}^{2}$

Ansatz: we assume each base function is a polynomial in d variables. **Example on simplex topology** $S^0 = P$, $S^{d+1} = (S^d)^\circ$ We construct Ψ^d_{ι} of all monomials in *d* variables of exactly order *k*: dim. monomials recursion relation $\Psi_{0}^{0} = 1$ $\Psi_{0}^{0} = 1$ 0 $\begin{array}{rcl}
\Psi_0^0 &= 1 \\
\Psi_1^0 &= \emptyset & x\Psi_0^0 = x \\
\Psi_2^0 &= \emptyset & x\Psi_1^0 = \emptyset & x(x\Psi_0^0) = x^2
\end{array}$ $\Psi_{0}^{1} = 1$ $\Psi_{1}^{1} = x$ 1 $\Psi_{2}^{1} = x^{2}$ $\Psi_{0}^{1} = 1$ $\Psi_0^2 = 1$ $\Psi_{1}^{1} = x$ $\mathbf{v}\Psi_0^1$ $\Psi_1^2 = \{x, y\}$ 2 $\Psi_2^1 = \{x^2, xy, y^2\}$ $\Psi_{2}^{1} = x^{2}$ $\mathbf{y}\Psi_1^{\overline{1}} = x\mathbf{y}$ $\mathbf{y}(\mathbf{y}\Psi_{0}^{1}) = \mathbf{y}^{2}$ Ψ_0^d $\Psi_1^{d+1} = \{\dots\}$ $\Psi_2^{d+1} = \{\dots\}$ $\begin{array}{ccc} \Psi_1^d & z\Psi_0^d \\ \Psi_2^d & z\Psi_1^d & z(z\Psi_0^d) \end{array}$ d+1

Example on cube topology $\mathcal{Q} = I, \mathcal{Q} = (\mathcal{Q})^{T}$								
We construct Ψ_k^d of all bi-monomials in <i>d</i> variables of exactly order <i>k</i> :								
	dim.	bi-monomials	recursion relation					
	0	$\Psi_{0}^{0} = 1$	$\Psi_0^0 = 1$					
-	1	$\Psi_0^1 = 1$	$\Psi_{0}^{0} = 1$					
		$\Psi_1^1 = x$	$\Psi_1^0 = \emptyset x \Psi_1^0 = \emptyset x \Psi_0^0 = x$					
-	2	$\Psi_0^2 = 1$	$\Psi_{0}^{1} = 1$					
-		$\Psi_1^2 = \{x, xy, y\}$	$\Psi_1^1 = x y\Psi_1^1 = yx y\Psi_0^1 = y$					
	d+1	$\Psi_0^{d+1} = \{\ldots\}$	Ψ^d_0					
		$\Psi_1^{d+1} = \{\ldots\}$	$\Psi^d_1 = z \Psi^d_1 = z \Psi^d_0$					
		$\Psi_2^{d+1} = \{\ldots\}$	Ψ_2^d $z\Psi_2^d$ $z(z\Psi_2^d)$ $z(z\Psi_1^d)$ $z(z\Psi_0^d)$					
Recursion correct for any reference element $R^{ }$ (e.g., prisms).								

Example on cube topology $Q^0 = P Q^{d+1} - (Q^d)$ W

ference element *K*⁺ (e.g., prisins). Note: recursion also works to compute arbitrary derivatives.

Nodal variables

Example Spaces

			Orthonormal shape functions				
L	agrange sj	pace	<i>Pre basis:</i> $\boldsymbol{B}_{\boldsymbol{R}} = \mathcal{M}_{sd}^{k}$ or $\mathcal{M}_{\boldsymbol{R}}^{k}$				
Pre basis: $B_R = \mathcal{M}_R^k$			Bilinear form: $a_R(u,v) = \int_R uv$				
<i>Functionals:</i> $\lambda_p(u) = u(p) \ p \in P_L$							
Raviart-Thomas space							
Pre basis: $\boldsymbol{B}_{R} = (\mathcal{M}_{R}^{k})^{d} + x \bar{\mathcal{M}}_{R}^{k}$							
Functionals:	$\lambda_{\hat{e},p}(u)$	$:= \int_{\hat{e}} u \cdot n_{\hat{e}} p$	for all $\hat{e} \in \hat{E}_R^1$ and $p \in B_k(\hat{e})$				
	$\lambda_{R,p,j}(u)$	$:= \int_R u \cdot e_j p$	for all $p \in B_{k-1}(R)$ and $j = 1, \ldots, d$				
Raviart-Thomas space							
Pre basis: $B_R = (\mathcal{M}_R^k)^d + x \bar{\mathcal{M}}_R^k$							
Functionals:	$\lambda_p(u) \ \lambda_{p,j}(u)$	$:= u(p) \cdot n_{\hat{e}(p)}$ $:= u(p) \cdot e_j$	for all $p \in P_L^1$ for all $p \in P_L^0$ and $j = 1, \dots, d$				

Example Spaces

Raviart-Thomas space						
Pre basis:	Pre basis: $B_R = (\mathcal{M}_R^k)^d + x \bar{\mathcal{M}}_R^k$					
Functionals:	$\lambda_{\hat{e},p}(u)$	$:= \int_{\hat{e}} u \cdot n_{\hat{e}} p$	for all $\hat{e} \in \hat{E}^1_R$ and $p \in B_k(\hat{e})$			
	$\lambda_{R,p,j}(u)$	$:=\int_{R}^{\bullet} u \cdot e_{j} p$	for all $p \in B_{k-1}(R)$ and $j = 1, \ldots, d$			
Raviart-Thomas space						
Pre basis: $\boldsymbol{B}_R = (\mathcal{M}_R^k)^d + x \bar{\mathcal{M}}_R^k$						
Functionals:	$\lambda_p(u)$	$:= u(p) \cdot n_{\hat{e}(p)}$	for all $p \in P_L^1$			
	$\lambda_{p,j}(u)$	$:= u(p) \cdot e_j$	for all $p \in P_L^0$ and $j = 1, \ldots, d$			

Definition of functionals require

- Definition of pointsets (on subentities)
- Quadrature rules (on subentities)

Everything can be implmented using recursive definition of reference elements and subentity embeddings.

Construction of shape function set

1. Construction phase

Evaluate *prebasis* **B** for $A_R = (\lambda_j(\psi_i))_{ij} \in \mathbb{R}^{N_R \times N_R}$ and compute A_R^{-T} . Note: Setting up the *sparse* matrix is only done once. **2. Evaluation phase**

Evaluation of *prebasis* **B** to compute $\mathcal{B}_R = (A_R)^{-T} \mathbf{B}_R$.

Note: For any basis this is always the same matrix-vector multiplication (even for derivatives).

Note: If caching on quadrature points is used then this step is also start up.

Usage of different field types:

We use *high precision floating point* arithmetics (alglib based on mpfr, gmp). ComputeField: used to setup matrix and during inversion/QR. StorageField: used for storing the matrix B^{-T} and during the evaluation phase.

Note: Final Caching is done in standard double precision.

Construction of the global space

Definition (Twist-free grids)

Grids are twist free when this does not happen (an even more technical definition is possible...)

- 1 Cartesian grids in any dimension *d* are twist free
- Simplex grids in any dimension d can be made twist free due to the construction of the reference elements: use global numbering of verticies to sort verticies p_{n0},..., p_{nd} in simplex T, i.e., n_i < n_{i+1}. Now construct F_T with F_T(p̂_k) = p_{nk}.

Note: in all reference elements edges are oriented from low to high index, similar for faces...

General case: Sort vertices of *T* as before: p_{n_0}, \ldots, p_{n_N} with $n_i < n_{i+1}$. Construct mapping τ from reference element \hat{T} to itself taking $\hat{p}_k \rightarrow \hat{p}_{n_k}$ (simple).

Use τ in fuctionals during basis construction, e.g,

Lagrange :
$$\lambda_p(u) = u(\tau(p)) p \in P_L$$

$$\mathbf{RT} : \lambda_{\hat{e},p}(u) = \int_{\hat{e}} u \circ \tau \cdot n_{\hat{e}} p$$

Result: new set of basis function for each occuring "twist" in grid (small number, can use caching).

- L^2 -ONB: orthonormal basis for local L^2 -projection.
- L^2 -Lob: Lagrange functions using Lobatto points for local L^2 -projection.
- *P*-Lob: Lobatto point set for the pointwise evaluation.

We also tested the equidistant point set but results are less satisfactory.

Functional interpolation: comput DoFs using functionals λ . L^2 **projection:** invert mass matrix to cmpute DoFs Note: the same discrete function but conditioning of mass matrix differes. Interpolation error (*p* convergence)

An experiment

To Do

- test more elements: Nedelec, hierarchic...
- use code generator: e.g., let Maple generates optimized code. Example:

 $\varphi_1(a, b) =$

 $\begin{array}{l} (-0.2424871130596428210938424878108221313725E1a + 0.4156921938165305504465871219614093680664E1a^2 + 0.3533383647440509678795990536671979628557E2ab - 0.5819690713431427706252219707459731152920E2a^2b - 0.945697409326070022659857024622063123519E2ab^2 + 0.1163938142686285541250443941491946230584E3a^2b^2 + 0.5819690713431427706252219707459731152920E2ab^3, 0.1732050807568877293527446341505872366945E1 - 0.3464101615137754587054892683011744733891E1a - 0.287520434056433630725560926899748129126E2b + 0.160041946193642619219360419551426067056E3ab^2 - 0.1382176544439964080234902180251686148824E3b^3 + 0.160041946193642619219360419551426067056E3ab^2 - 0.1382176544439964080234902180521686148824E3b^3 + 0.1600413939445504953733210018207120880771773E1a - 0.2146625258399798108552806721982025186026E2a^2 - 0.4561578674099570980674714284211803520299E2ab + 0.1878297101099823344983705881734272037771E2a^3 + 0.150263766887985867598869647035841736212183E2ab^2 - 0.150263768089789856759886947033217762522797714297286049957132182183222922b + 0.157205985384938170742970586069952132183182ab^2 - 0.15026376808978985675988694703321771E2a^3 + 0.1502637680879858675988696470358417630217E2a^2b^2 - 0.1502637680879858675988696470358417630217E3a^2b^2 - 0.1502637680879858675988696470358417630217E2a^2b^2 - 0.15026376808798586759886947035841730217E3a^2b^2 - 0.15026376808798586759886947035841730217E3a^2b^2 - 0.15026376808798586759886947035841730217E3a^2b^2 - 0.15026376808798586759886947035841730217E3a^2b^2 - 0.15026376808798586759886947035841730217E3a^2b^2 - 0.1502637680579858675988694703582170637847070358417630217Ea^2b^2 - 0.150263768079858675988674053584707358217630217E3a^2b^2 - 0.1502637680578858758867405358417630217E3a^2b^2 - 0.150263768057888675988664703587417630217E3a^2b^2 - 0.1502637680578858758867405358417630217E3a^2b^2 - 0.15026376805788567588674053584716730217E3a^2b^2 - 0.15026376805788587588674053584716530217E3a^2b^2 - 0.1502637680578858758867405358471673584776358471673584776358477635847763584776358477635847763584776358477635847763584776358$

 $\begin{array}{l} 0.2504396134799764459978274508979029383691E2ab^3, \\ -0.2236067977499789696409173668731276235440E1 + \\ 0.1341640786499873817845504201238765741264E2a + \\ 0.23856021344975184176825429210209597824E2b - \\ 0.134164078649873817845504201238765741264E2a^2 - \\ 0.1448972049419863723273144573738765000567E3ab - \\ \end{array}$