The Distributed and Unified Numerics Environment (DUNE)

Introduction
@® DuNEe- Grid Interface Library
©® DuNE-FEM- Discretization Interface Library
@ Generic Implementation of Numerical Schemes
@® Conclusions

Andreas Dedner,

Department of Mathematics,
University of Warwick
www.warwick.ac.uk/go/dune

THE UNIVERSITY OF

WARWICK

@ Introduction

Construction of higher order approximation Uy

for solution U : RY x R* — R™ of

AU 1) + V- (F(U(X, 1), %, t) — D(U(x, 1), X,)VU (x, 1))
FAUX D), %,)VUX 1) = SUX),) + LU, D)X

convection dominated case with non-local operator

Discretization with little restriction on

e space dimension:
includingd > 3 and problems on manifolds
e grid structure:
including structured, unstructured, hanging nodes, distributed, nietwor
e problem formulation:
reuse of basic schemes requiring only problem data (e.g. Lax-fesjr
combined with specialized methods (if necessary)...

for applications we need all that including high efficiency

Many PDE software packages, each with a particular set of features:
e Alberta: unstructured, simplicial, bisection refinement
e FEAST: block-structured, parallel
e DEALII: cube elements, shared memory parallelization
e Many more: DiffPack, IPARS, libMesh++, ...
Using one package it may be
e impossible to have a certain feature

o very inefficient implementation for a certain applications

Extending the feature set is very difficult
Reason

Data and grid structure are very closing entangled and algorithms are
implemented direclty on the basis of this particular grid data structure.

Grid Structures

H

s P e Cartesian
stuctured, 3D conforming, 20 nonconforming ¢ conforming local adaptation

nested, 1D NP .
red-green, bisection topological spaces

r’/:';ﬂ
e

.
data decomposition mixed dimensions

e adaptation with hanging nodes

e block adaptive
¢ hybrid element types

Numerical Wethods
e Continuous Finite-Elements e Direct linear solvers

Krylov type iterative solvers
Large range of preconditioner
Newton type methods
Runge-Kutta ODE Solvers

Discontinuous Finite-Elements

Finite-Volumes
Spectral methods
Boundary Element methods

Possible goals

Use available grid managers (e.g. Alberta, UG, p4est...), use aeaddiantages (e.qg.
O(1) storage) and use available packages (e.g. laspack, umfpack, fPetsc

‘Compressible Euler equations

pVL V2 pV3
V2 +p pV2VL pVavL
fi(o) = PVIV2 , B = V+p |, @)= PVaV2
PV1Va PVaV3 PV +p
(€ + PV (PE€ + p)V2 (PE€ +p)vs

conservative variableg= (p, pV, p€)", equations of statp = p().

Test case: Mach 3 flow in a channel with a stepl(

constant initial datatlo(. . .) = (po, (pV1)o, 0,0, p€o) = (1.4,4.2,0,0, 8.8)

reflective

—_— —_—

outflow
— —

—_— —_—

—_—
wall

reflective

Forward facing step

o4 ~8

Movie removed Movie removed

=

You should be able to do all the previous simulation on Wednesday...

rthe Poisson equation —Au=f

Moving Surface

Movie removed

Same finite-element code of
different order on different

realizations of the grid inter-

face...

® DuNE- Grid Interface Library

History Overview:

2002 Initiating DUNE meeting in Bonn

2003 First DUNE grid implementation waSGr i d (structured)
2004 Firstimplementation for an adaptive giidl bert aGri d
2005 ALUSI npl exGrid andUGGid

History Overview

2002 Initiating DUNE meeting in Bonn

2003 First DUNE grid implementation waSGr i d (structured)

2004 Firstimplementation for an adaptive giidl bert aGri d

2005 ALUSI npl exGrid andUGGid

2006 DUNE-GRID 1.0

2007 First DUNE Summer School (followed by at least one per year)

2008 Paper on INE-GRID (published in Computing)
(P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kléfkorn., ®hlberger, O. Sander)

2002
2003
2004
2005
2006
2007
2008

2009
2009

2010
2010

History Overview

Initiating DUNE meeting in Bonn

First DUNE grid implementation waSGr i d (structured)

First implementation for an adaptive giidl bert aGri d

ALUSI npl exGrid andUGx i d

DUNE-GRID 1.0

First DUNE Summer School (followed by at least one per year)

Paper on NE-GRID (published in Computing)
(P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kléfkorn., ®hlberger, O. Sander)

Further grids: GOMETRYGRID, CORNERPOINTGRID, GRIDGLUE

DUNE-GRID 1.2.2, DuNE-FEM 1.0 (a major discretization module)
(A. Dedner, R. Kléfkorn., M. Nolte, M. Ohlberger)

DUNE-GRID 2.0
1. DUNE user meeting (planned about once every 1.5 - 2 years)

2002
2003
2004
2005
2006
2007
2008

2009
2009

2010
2010
2011
2011

Initiating DUNE meeting in Bonn

First DUNE grid implementation waSGr i d (structured)

First implementation for an adaptive giidl bert aGri d

ALUSI npl exGrid andUGx i d

DUNE-GRID 1.0

First DUNE Summer School (followed by at least one per year)

Paper on NE-GRID (published in Computing)
(P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kléfkorn., ®hlberger, O. Sander)

Further grids: GOMETRYGRID, CORNERPOINTGRID, GRIDGLUE

DUNE-GRID 1.2.2, DuNE-FEM 1.0 (a major discretization module)
(A. Dedner, R. Kléfkorn., M. Nolte, M. Ohlberger)

DUNE-GRID 2.0

1. DUNE user meeting (planned about once every 1.5 - 2 years)
DUNE-GRID 2.1, DUNE-FEM 1.2

DuUNE School (in Heiderlberg, Freiburg, Warwick, and Novosibirsk)

istributed and- nified , umerics ~nvironment

DUNE- http://www.dune-project.org

project language C++

portability via ISO standard conformity (GCC 4.x, ICC 10.x)

e open source software (GPL with linking exception — same as GCC)
current stable release:UNE 2.1 (about to be released)

istributed and- nified , umerics ~nvironment

DUNE- http://www.dune-project.org
project language C++
portability via ISO standard conformity (GCC 4.x, ICC 10.x)
e open source software (GPL with linking exception — same as GCC)
current stable release:UNE 2.1 (about to be released)

DuUNE Developers
Heidelberg

e Peter Bastian

Freiburg e Aachen, Germany

* Markus Blatt « Robert Kigflom * Berlin, Germany

e Jorrit Fahlke e Martin Nolte e Magdeburg, Germany
Berlin Miinster e Stuttgart, Germany

e Oliver Sander e Graz, Austria

e Mario Ohlberger o)
e Christian Engwer e Zirich, Switzerland

Warwick e Torntheim, Norway
e Andreas Dedner ° ..

e Carsten Graser

istributed and - nified" umerics -~ nvironment

Project Infrastructure:

Subversion repository
Doxygen in class docu
Project homepage
Mailing list

Bug tracker

Automated testing system
Wiki for user discussion
Fixed coding style

Testing environment

e Central nightly builds with detailed graphical report

e Decentralized testing environment allowing user to
test their own system and automatically submit
reports

o Performance testing environment testing impact of
changes using user define benchmark problems

(%2}

yet realized)

v

http://www.dune-project.org/doc/doxygen/html

Istributed-and- nifled Ur[]er'ics' “nvironment

Project Infrastructure:
e Subversion repository STy ——"
e Doxygen in class docu
Project homepage

e Central nightly builds with detailed graphical report
e Decentralized testing environment allowing user to

°
()

e Mailing list test their own system and automatically submit
e Bug tracker reports
o Automated testing system o Performance testing environment testing impact of

Wiki for user discussion changes using user define benchmark problems (no
yet realized)

¢ Fixed coding style y

Decision Process:
@ Lots of discussions (mailing list, bug tracker, phone, meetings)
® Annual developer meeting
® Adding and removing feature relies on formal votecofe developers
Interface Changes:
@ Conservative in adding new feature (avoid feature creep)
® Features are deprecated for one release before removal

http://www.dune-project.org/doc/doxygen/html

Istributed. and " nified , umerics =nvironment

The DUNE development is decentralized J

Advantages:
e More manpower
e More points of view and applications
e More platforms

istributed and- nified , umerics ~nvironment

The DUNE development is decentralized J

Advantages:
e More manpower
e More points of view and applications
e More platforms

Challenges:

Due to Spatial Separation (SS) and Academia (Ac)
e True discussions are difficult (SS)

Decision processes are difficult (SS)

Feature creep (Ac)

Difficult to produce documentation (Ac)

No dedicated developers or manager (Ac)

No real funding (Ac)

Istributed and - nified . umerics =nvironment

Design goals: and Efficiency and Modularity

e Separate grid structure and data
e Define abstract interfaces for each part (grid, discrete functipns..
¢ Base interface on mathematical formulism

@ Determine what algorithms require from grid and data structure to operate
efficiently

® Formulate algorithms based on this interface
® Provide different implementations of the interface

Structured grid

Algorithm fesh
|(II’\Ft)ErfaCe Unstructured simplicial grid ‘

\I Unstructured multi-element grid‘

Istributed and - nified . umerics =nvironment

esign goals: Flexibility and and Modularity

e Compile time selection of data structures (static polymorphism)

e Compiler generates code for each algorithm / data structure combination
e All optimizations apply, in particular inlining

e Possible through use of C++ templates

typedef Gridimplementation Grid;

typedef Grid:: LeafGridView GridView;

typedef FiniteElementSpace < GridView, order > FESpace;
typedef DiscreteFunction< FESpace > DiscreteFunction;
typedef EllipticOperator < Model, DiscreteFunction > Operator;
typedef CGlInverseOperator< Operator > InverseOperator;

Model model;

RHSFunction f;

DiscreteFunction uh;
InverseOperatoroperator(model);
operator(f,uh);

Istributed. and " nified , umerics =nvironment

Design goals: Flexibility and Efficiency and

Through interfaces, existing software can be easily used in own codplerment
binding between external software and interface.

Alberta

] L]]

Grid IF

Functions&
Operators IF

Sparse
Matrix
Vector
IF

User Code

Solvers IF

ISTL

Geometry IF

LAPACK

istributed and - nified , umerics =nvironment

e DUNE-COMMON - Basic Classes
(MPI communicator, build-system, ...)

e DUNE-GRID — abstract Grid Interface and Implementations
(ALBERTA, ALUGrid, UG, YaspGrid)

e DUNE-ISTL — Iterative Solver Template Library
(BCRSMatrix, ILU, BiICG-Stab, AMG, ...)

e DUNE-LOCALFUNCTIONS — Basis Functions and Mappers
(Lagrange basis functions, Raviart-Thomas, DG, DoF mappers, ...

e DUNE-GRID-HOwTO - Tutorial for theDUNE-GRID module

Istributed and - nified . umerics =“nvironment

e DUNE-COMMON - Basic Classes
(MPI communicator, build-system, ...)

e DUNE-GRID — abstract Grid Interface and Implementations
(ALBERTA, ALUGrid, UG, YaspGrid)

e DUNE-ISTL — Iterative Solver Template Library
(BCRSMatrix, ILU, BiICG-Stab, AMG, ...)

e DUNE-LOCALFUNCTIONS — Basis Functions and Mappers
(Lagrange basis functions, Raviart-Thomas, DG, DoF mappers, ...

e DUNE-GRID-HOwTO - Tutorial for theDUNE-GRID module)

DuNE Discretization Modules (see also www.dune-project.org)

e DUNE-FEM — developed in Freiburg, Warwick, and Munster

e DUNE-PDELAB - basically developed in Heidelberg

v
External libraries, e.qg.,

e KASKADE-7 — developed in Berlin

e DUMux —developed in Stuttgart

e OPM —developed in Trondheim

A

dand nified Umerics nvironment

DUNE consists of a set of highly integrated modules (libraries and applisjtio
The buildsystem is based @t oconf, aut omake & |i btool.

Interaction and dependencies between the different modules is hdnydled
dunecontrol .

all necessary DUNE modules are assumed to be in the same directory
each module contains fitune. nodul e giving module name and dependency

Module: navierstokes

Version: 0.9

Maintainer: dune@mathematik.urfreiburg .de

Depends: dunecommon (>= 2.0) dunegrid (>= 2.0) dunefem (>= 1.1)
Suggests: duneistl (>= 2.0) dune-localfunctions (>= 2.0) dunespgrid

a scriptdunepr oj ect for easy setup of new module

istributed and- nified , umerics ~nvironment

Main Module D UNE-GRID: Realization of Grid Interface

ALUGrid: simplex grid in 2d/3d and cube grid in 3d with non-conform grid
adaption, parallelization and dynamic load balancing

AlbertaGrid simplex grid in 2d/3d with conform grid adaption (bisection)
GeometryGidreplace geometry of each element

NetworkGrid grid for 1D networks

PrismGrid tensor product prismatic gridX x [0, h])

PSGrid parallel simplex grid also on manifolds

UGGrid: hybrid grid with non-conform adaption and red-green closure
YaspGrid parallel cartesian grid

® DuNE-FEM- Discretization Interface Library

Dune-FEM: A Discretization Module

DUNE-FEM (dune.mathematik.uni-freiburg.de, release 1.1)
Idea base implementation of numerical scheme on mathematical formalism

Interfaces for

¢ Function spaces and functions

¢ Discrete function spaces (combining function space and vector vahigzfase
function set)

¢ Discrete functions (with element wise representation, dof handling)
o Discrete spatial operators (with efficient operations, e-gando)

¢ Inverse operators (Newton, Krylov methods...)

¢ IMEX Runge-Kutta methods for time dependent problems

e Automatic handling of grid adaptation, parallelization, and load balancing

v

DuNE-FEM: A Discretization Module

@ Discrete spaces and discrete functions
o discrete function spaces (Lagrange, DG, ...)
o discrete functions (adaptive DF, block vector DF, ...)
e caching of basis functions
@® Discretization schemes
e Lagrange FEM (generic, arbitrary order)
¢ Finite Volume (first and second order)
e Discontinuous Galerkin (orthonormal basis functions, uprtter 8)
© implemented Runge Kutta solvers
o explicit Strong-Stability-Preserving Runge Kutta (SSR}Rup to ord. 3
o Diagonally Implicit Runge Kutta (DIRK) methods up to order 3
o Semi Implicit Runge Kutta (SIRK) methods up to order 3
@ Misc
¢ Restriction/prolongation strategies
e DoF handling (automatic resize and DoF-compress)
e Data I/O and check-pointing
e Communication patterns
L]

A D, R. Kléfkorn, M. Nolte, M. Ohlberger.

A generic interface for parallel and adaptive scientific computing: Abstraction
principles and the DUNE-FEM module.

Computing, 2010.

other contributors: S. Brdar, M. Krankel, Ch. Gersbacher, ...

The
[]

Dune-FEM: A Discretization Module

DUNE-FEM-HoOwTO
Getting started, or how to calculate a Lagrange interpolation

A Finite Volume scheme demonstrates the implementation of a first order Finite
Volume scheme using ONE-FEM.

The Poisson problem is an example for calculating a solution of the Poisson problen
using conforming Finite-Elements

LDG for Advection-Diffusion equations is an example for implementing a Local
Discontinuous Galerkin solver for advection-diffusion problems

The Stokes problem implement a Stokes solver in theuDEe-FEM context.

Data I/O and check pointing shows how to incorporate data I/0 and check pointing
into your simulation code.

DUNE-FEM-SCHOOL

Introduction to generic programming in C++

Introduction to the WNE-GRID module

Introduction to the DNE-FEM module

Finite-Volume for conservation laws

Finite-Element for linear elliptic and parabolic problems
Discontinuous-Galerkin for non-linear evolution equations

@ Generic Implementation of Numerical Schemes

Discontinuous Galerkin Method, Approach |

find piecewise polynomial approximationUy, of

atU(Xa t) +V- (F(U(Xa t),X, t) - D(U(Xa t),X, t)VU(X, t)) =0

/K Brticp = / (F(u) - Vo) — /a Lo
- / (D(U) VK - V) + / Ba(U) - kg + Ba(U) - Vo
K oK
= —< Eﬁ[uh},ﬁp > —< [lE[uh],w >

e hyperbolic operatofg ~ V - F(u) on one elemerk, possibly with explicit time step
F: suitable upwind flux for advection requiring only data on direct neigibor

° glliplic operator:LR ~ —V - D(u)Vu on elemenk, possibly with implicit time step
D1, D2: suitable flux for diffusion requires only data on direct neighbors

e use IMEX Runge-Kutta scheme

Discontinuous Galerkin Method, Approach |

find piecewise polynomial approximationUy, of

atU(Xa t) +V- (F(U(Xa t),X, t) - D(U(Xa t),X, t)VU(X, t)) =0

Sunh = —(CA[Uh] + P [un])

Lk[un] = V- F(U(x, 1), %, 1)
LR[un] = — V- D(U(x, 1), X, 1) VU(x, t)

o [is an approximation for a first order hyperbolic equation (e.g., Ewjeaton)

o £P is an approximation for an elliptic or parabolic equation (e.g., Laplacé/Hea
equation)

e Suitable ODE for time integration

Description

Model: functionF andD
Discrete Model: F andDs, D, (usingF, D)
Problem: other functions, e.g., initial data

Discontinuous Galerkin Method, Approach i

find piecewise polynomial approximationUy, of

AU 1) + V- (FUX1),x 1) = DUX1),x)Vd(U(x1))) = 0

Rewritte as first order system féw, u) and useC”:
o(xt) +VvdU(x,t)) =0, UXt)+ V- (fUX1),xt)+DUXL),xt)o(xt)) =0.

oh = —L5[un], An = —L5[un, on).

or & = L£[un] == L5]un, £2[un]].
Use the same operator tow times with different ffux

L3]un] = V- F(U(x, 1), X,) with F(U, x,t) = d(U))
L5]un] = V - F(U(X, 1), X,) with F(U, o, x,t) = f(U(x, 1), x,t) + D(U(x, t), X, t)o

Description
Model: functionF, D andd
Discrete Model 1: F; (usingd)
Discrete Model 2: F; (usingF, D)
Problem: other functions, e.g., initial data

_Approach I and Il Compared

DG Spatial Operators for
LU ==V - (fUX1),x 1) = DU(x 1), x,) Vd(U(x 1))

Approach |

L°[un] := LP[un] + Lalun]
Model: functionF andD (d = 1)
Discrete Model: F andDs, D, (usingF, D)
Problem: other functions, e.g., initial data)

Approach Il

l:AD[LIh] = ﬁ?[uh, E’f[uh]]
Model: functionf, D andd
Discrete Model 1: F; (usingd)
Discrete Model 2: F, (usingF, D)
Problem: other functions, e.g., initial data

Two-phase flow in porous media

Global pressure, global velocity (incompressible, no gravity)

—V - (A(9KVpP) =0, inQ
U= —A(9KVp, inQ
PO+ V - Uw(s) — V- (B(9Vs) =0, in(0,T] x @ C R,
8(0,:) = (), inQ.)

Pressurep, velocity U, and saturation s

Givens", n > 0, we calculate:
0 -V - (\SHKVp™) =0, (£°)
@ "™ = Puav(—A(8)K V™) (speciallized: enforce continuous normal velocit

y)

© S = RKC(S; P, UMY (LALC or L)

v

Description

Model for 1: B, A, K, andfy
Discrete Model 1: D = A(s)K
Discrete Model 2: D = B(s), F = Ufu(s)
Problem: other functions, e.g., initial data

Two-phase flow in porous media

Initial and boundary data

100 no flow

p=3%10° p=10°
s =0.85 s=0.2
0 100

no flow
(Epshteyn & Riviere, Appl. Numer. Math., 2007)

Two-phase flow in porous media

efficiency

092
Optimal eficiency ——— L Y
ALUCUDEGHd k=2 —m—
L k2 —a_
64 128 256 512

number of processors

_Free surface hydrostatic flow

Time dependent domain
Q) = {(x, 2T e R x €y, b(x) < z< b(x) + h(x,t)}

O € R7% b: Q) — R is then bottom topography, amgt, -): Qx — R is the free surface.
The 3d velocity fieldu = (ux, w)" satisfies

dU+V-(Uueu)+Vp =(0,0,-g) +visc. inQt),

V-u =0 in Q(t),
oh+ux-V(b+h =w in Qy, (z=b(x) + h(x,t)),
ux-Vb =w in Q, (z= b(x)),

whereg > 0 is the gravitational constant.
With dw + (u - V)w = 0 we arrive (with scaling arguments) at the hydrostatic pressure
equation:

82p = -0, p(X, Z, t) = —g(Z— h(X>t) - b(X))

Integration of divergence constraint owdeads to3D shallow water system.

— Free surface hydrostatic flow
Time dependent domain
Q) = {(x, 2T e R x €y, b(x) < z< b(x) + h(x,t)}

With shallow water scaling the free surfdag, -): Qx — R and the 3d velocity field
u = (ux,w)": Q(t) — R satisfy

ah+ Vy - (ot uxdz) —0 in O,
dhuy + V - (hu @ ux) + gVxh? = —ghVyb + visc. in Q(t),
OW = —Vyx- Uy in Q(t),

Discretization (in space):
@ compute the integrals of the horizontal velocities: fbb+h
(special operator using specfism grid)
@® compute the vertical velocity (integration inz)
(special operator using specfism grid)
@® apply advection-diffusion discretization f@n, uy) (£°)

uxdz

Description

Model: F = (0, hu ® ux + gh?) andD = visc
Discrete Model: E,D
Problem: other functions, e.g., initial data

y Simulation Resuits

early time later time

Y F T

parallel prisma grid

diploma thesis C. Gersbacher

Using Interface Classes

Operators < DiscreteModel >: examplesC?, £P, £A°

DiscreteModel < Model >: part of discretization which is not part of continuous problem
(numerical fluxes)

Model< grid dimension >: first part of continuous problem

Problem< grid dimension >: second part of continuous problem

Often onlyProblemneeds to be implemented (e.g., isgerModelto solve Euler equations)
Otherwise often onlyProblemandModel needs to be implemented

Using Interface Classes

Operators < DiscreteModel >: examplesc?, £P, £*°

DiscreteModel < Model >: part of discretization which is not part of continuous problem
(numerical fluxes)

Model< grid dimension >: first part of continuous problem

Problem< grid dimension >: second part of continuous problem

Often onlyProblemneeds to be implemented (e.g., isgerModelto solve Euler equations)
Otherwise often onlyProblemandModel needs to be implemented

Difference between

Distinction is somewhat arbitrary, general idea

Problem: usedynamic polymorphism to allow runtime selection
Model: usestatic polymorphism for maximal efficiency

~Using Interface Classes

Operators < DiscreteModel >: examplesc?, £P, £*°

DiscreteModel < Model >: part of discretization which is not part of continuous problem
(numerical fluxes)

Model< grid dimension >: first part of continuous problem

Problem< grid dimension >: second part of continuous problem

Often onlyProblemneeds to be implemented (e.g., isgerModelto solve Euler equations)
Otherwise often onlyProblemandModel needs to be implemented

Difference between

Distinction is somewhat arbitrary, general idea

Problem: usedynamic polymorphism to allow runtime selection
Model: usestatic polymorphism for maximal efficiency

ODESolver < Operator >: u" — u™* to solvedu = L[u]
InverseOperator < Operator >: u = £~*[f] to solveL[u] = f

Example code for adaptation and communication

Il construct view \grid of a hierarchical grid \hgrid (g@. leaf view)
GridPartType grid(hgrid);

Il construct a discrete function space \discfuncspaceg(elagrange space)
DiscreteSpaceType space(grid);

/I create the solution u (providing dof storage)

DiscreteFunctionType u(‘solution”, space);

/I communicate u using the space’s default communication
u.communicate () ;

Il type of the default restriction and prolongation operato

typedef RestrictProlongDefault< DiscreteFunctionType > RestRcolongType;

/Il type of the adaptation manager (more than one discrete ctions using
Tuples

typedef AdaptationManager< HGridType, RestrictProlongType >
AdaptationManagerType;

Il create restriction and prolongation operator for u atlde adaptation
manager

RestrictProlongType uRestrictProlong(u);

AdaptationManagerType adaptationManager(hgrid, uRecttProlong);

I/l mark grid for refinement and coarsening using some extelrmethod
\code{mark}
mark(hgrid , u);

/!l adapt the grid with automatic restriction and prolonganti of the discrete
function u

/Il this also includes dynamic loatbalancing if supported

adaptManaager . adapt() :

Example code showing mass matrix assembly

// iterate over the grid \grid
for(IteratorType it = space.begin(); it != end ; ++it)
{

const EntityType &entity = xit;

I/l get local function u_\elem (proxy object)
LocalFunctionType ulLocal = u.localFunction(entity);

// obtain local operator $M_{\elem ,h\elem}$
LocalMatrixType MLocal = M.localMatrix (entity , entity);

I/l obtain the local base function set \basefuncset_\elem
const BaseFunctionSetType &baseFunctionSet = space.baseRan8et(entity);
const unsigned int numBaseFunctions = baseFunctionSet.numBaseFunctions ()

I/l compute the integrals $\int_\elem \varphi_i\varphi_j#d $\int_\elem
flvarphi_i$ using a quadrature with base function caching

CachingQuadrature<GridPartType , 0> quadrature (entit2«xspace.order()+1);

const unsigned intnop = quadrature.nop();

for(unsigned intgp = 0; gqp < nop; ++qp)

/I evaluate all basis functions at once
baseFunctionSet.evaluateAll(quadrature[qp], values);

/I add $\int_\elem \varphi_i\varphi_j$ to the operator M

for(unsigned inti = 0; i < numBaseFunctions; ++i)
for(unsigned intj = 0; j < numBaseFunctions; ++j)
MLocal.add(i, j, (values[i 1% values[j]));

® cConclusions

Parallel Efficiency (strong)

Time explicit DG scheme for Euler’s equatio

- 1.01
optimal slope
runtime whole timestep —&— 1
runtime ode solver —#—
0.99
0.004 N 0.98
g e ~ 097
=] 8
] £ 0.96
3]
0.002 0.95
- 0.94
‘optimal efficiency
0.001 efficiency timestep —&— 4 0.93
efficiency ode solver —&— 0.2
128 256 512 128 256 512

number of processors number of processors

optimal slope 1
cached ALUCubeGrid —&—
1e2 0.95
0.9
" I 6e-3
E 403 5 0.85
g 3e3 H 08
= 23 £ 075
] 3]
° - - .7
le-3 optimal efficiency —— o
cached ALUCubeGrid —&— 0.65
6e-4
0.6
0.55
64 128 256 512 64 128 256 512
number of processors number of processors

istributed and - nified" umerics -~ nvironment

Newer Developments
1 Definition of meta gridsi.e., use a given DNE grid to define a new one.
e prismatic grid (unstructured in xy-plane, structured inang)
o GeometryGridvhich replaces the geometry of each element of a given grid ®ya n
geometric mapping (higher order...)
2 Moving grids
3 grid-glue combine different grids with each other (in parallel)

4 Generic construction of finite-element spaces based on definitioodaf variables

Example of (provided by Oliver Sander, FU Berlin)

matching nonmatching i .

nonmatching overlapping

	Introduction
	Dune-- Grid Interface Library
	Dune-Fem-- Discretization Interface Library
	Generic Implementation of Numerical Schemes
	Conclusions

