DUNE —

The Distributed Unified Numerics Environment

P. Bastian

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg

Berlin, 1.7.2005

Joint work with:

M. Blatt C. Engwer R. Klöfkorn S. Kuttanikkad T. Neubauer M. Ohlberger O. Sander

Peter.Bastian@iwr.uni-heidelberg.de http://hal.iwr.uni-heidelberg.de/dune/

Outline

- The Concept
- Abstract Description of Grids
 - Preliminaries
 - Reference Elements
 - Grids
- Interface Implementation
 - Classes
 - Example
- Application to Linear Algebra and Solvers
 - Expressing Structure in FE Matrices
 - Performance
- Conclusions

Outline

- The Concept
- Abstract Description of Grids
 - Preliminaries
 - Reference Elements
 - Grids
- Interface Implementation
 - Classes
 - Example
- Application to Linear Algebra and Solvers
 - Expressing Structure in FE Matrices
 - Performance
- Conclusions

The Problem with Finite Element Software

- There are many PDE software packages, each with a particular set of features:
 - IPARS: block structured, parallel, multiphysics.
 - Alberta: simplicial, unstructured, bisection refinement.
 - UG: unstructured, multi-element, red-green refinement, parallel.
 - QuocMesh: Fast, on-the-fly structured grids.
- Using one framework, it
 - might be either impossible have a particular feature,
 - or very inefficient in certain applications.
- Extension of the feature set is usually hard

Reason: Algorithms are implemented on the basis of a particular data structure

Seperate data structures and algorithms.

- Programming with concepts
 - Determine what algorithms require from a data structure to operate efficiently ("concepts", "abstract interfaces")
 - Formulate algorithms based on these interfaces
 - Provide different implementations of the interface

Seperate data structures and algorithms.

- Programming with concepts
 - Determine what algorithms require from a data structure to operate efficiently ("concepts", "abstract interfaces")
 - Formulate algorithms based on these interfaces
 - Provide different implementations of the interface

Seperate data structures and algorithms.

- Programming with concepts
 - Determine what algorithms require from a data structure to operate efficiently ("concepts", "abstract interfaces")
 - Formulate algorithms based on these interfaces
 - Provide different implementations of the interface

Concept II

Implementation with generic programming techniques.

- Compile-time selection of data structures (static polymorphism).
- Compiler generates code for each algorithm-data structure combination.
- All optimizations apply, in particular function inlining.
- Allows use of interfaces with fine granularity.
- Concept has been around for some time:
 - Standard Template Library (1998):
 Containers. Blitz++, MTL/ITL, GTL, ...
 - Thesis of Gundram Berti (2000): Concepts for grid based algorithms.

Concept III

Reuse existing finite element software.

- Efficient integration of existing FE software.
- Developed by groups in Berlin, Freiburg and Heidelberg

Outline

- The Concept
- Abstract Description of Grids
 - Preliminaries
 - Reference Elements
 - Grids
- Interface Implementation
 - Classes
 - Example
- Application to Linear Algebra and Solvers
 - Expressing Structure in FE Matrices
 - Performance
- Conclusions

8/37

Finite Element Grids

There is great variability in finite element grids:

- Structured grid: O(1) memory, transformation might be simple.
- Unstructured grid: different element types
- Conforming/nonconforming grids
- Local mesh refinement: nested r. vs. point insertion, conforming r. (red/green, bisection) vs. nonconforming r. (hanging nodes).
- Grids on manifolds: shells, fractures (2D in 3D), wells, neural networks (1D in 3D).
- Dimension independence: Uniform access to entities of all codimensions.
- Parallel data decomposition: Overlapping, nonoverlapping, dynamic load balancing.
- Coupled grids: Overlapping, nonoverlapping, mortars.
- Other issues: Sparse grids, periodicity.

General Idea

- Describe a single element:
 - Its hierarchic construction from higher codimensions.
 - Its transformation from a reference element.
- Position of elements relative to each other:
 - On one grid level.
 - With respect to different levels.
- A formal specification of grids is required to enable an accurate description of the grid interface.

General Idea

- Describe a single element:
 - Its hierarchic construction from higher codimensions.
 - Its transformation from a reference element.
- Position of elements relative to each other:
 - On one grid level.
 - With respect to different levels.
- A formal specification of grids is required to enable an accurate description of the grid interface.

General Idea

- Describe a single element:
 - Its hierarchic construction from higher codimensions.
 - Its transformation from a reference element.
- Position of elements relative to each other:
 - On one grid level.
 - With respect to different levels.
- A formal specification of grids is required to enable an accurate description of the grid interface.

Preliminaries I

Convex polytope $H \subset \mathbb{R}^w$

- Is the convex hull of a finite set of points $X = \{x_0, \dots, x_n\}$. H is a closed set and $H = \overset{\circ}{H} \cup \overset{\circ}{\partial H}$.
- If n = 0, then H is a single point $\{x_0\}$.
- If n > 0, then let $\{b_1, \ldots, b_d\}$ be a basis of $\{x_1 x_0, \ldots, x_n x_0\}$. dim $(H) = d \le \min(n, w)$ is the dimension of H.

Face of a convex polytope

Let H be the polytope generated by the point set X. F is a face of H iff

- (i) $F \subset \partial H$, and
- (ii) F is generated by $Y \subset X$.

A face F has dimension $0 \le \dim(F) \le \dim(H)$.

Preliminaries I

Convex polytope $H \subset \mathbb{R}^w$

- Is the convex hull of a finite set of points $X = \{x_0, \dots, x_n\}$. H is a closed set and $H = \overset{\circ}{H} \cup \partial \overset{\circ}{H}$.
- If n = 0, then H is a single point $\{x_0\}$.
- If n > 0, then let $\{b_1, \ldots, b_d\}$ be a basis of $\{x_1 x_0, \ldots, x_n x_0\}$. dim $(H) = d \le \min(n, w)$ is the dimension of H.

Face of a convex polytope

Let H be the polytope generated by the point set X. F is a face of H iff

- (i) $F \subset \partial H$, and
- (ii) F is generated by $Y \subset X$.

A face F has dimension $0 \le \dim(F) \le \dim(H)$.

Preliminaries II

Codimension of a face

A face F of a polytope H has codimension c iff $\dim(F) = \dim(H) - c$. H itself has codimension 0. Some common names: Facet (c = 1), ridge (c = 2), edge $(c = \dim(H) - 1)$, vertex $(c = \dim(H))$.

Transformation

Let $0 \le d \le w$ be integers. (D, f) is a transformation iff

- (i) $D \subset \mathbb{R}^d$ is a closed, bounded point set, and
- (ii) $f \in (C^1(D))^w$ is one-to-one.

Generalized polytope

 $E \subset \mathbb{R}^w$ is a generalized polytope if there is a convex polytope H and a transformation (H, f) such that $\operatorname{Range}(f) = E$. F is a face of E if G is a face of H such that $\operatorname{Range}(f|_G) = F$.

12/37

Preliminaries II

Codimension of a face

A face F of a polytope H has codimension c iff $\dim(F) = \dim(H) - c$. H itself has codimension 0. Some common names: Facet (c = 1), ridge (c = 2), edge $(c = \dim(H) - 1)$, vertex $(c = \dim(H))$.

Transformation

Let $0 \le d \le w$ be integers. (D, f) is a transformation iff

- (i) $D \subset \mathbb{R}^d$ is a closed, bounded point set, and
- (ii) $f \in (C^1(D))^w$ is one-to-one.

Generalized polytope

 $E \subset \mathbb{R}^w$ is a generalized polytope if there is a convex polytope H and a transformation (H, f) such that $\operatorname{Range}(f) = E$. F is a face of E if G is a face of H such that $\operatorname{Range}(f|_G) = F$.

Preliminaries II

Codimension of a face

A face F of a polytope H has codimension c iff $\dim(F) = \dim(H) - c$. H itself has codimension 0. Some common names: Facet (c = 1), ridge (c = 2), edge $(c = \dim(H) - 1)$, vertex $(c = \dim(H))$.

Transformation

Let $0 \le d \le w$ be integers. (D, f) is a transformation iff

- (i) $D \subset \mathbb{R}^d$ is a closed, bounded point set, and
- (ii) $f \in (C^1(D))^w$ is one-to-one.

Generalized polytope

 $E \subset \mathbb{R}^w$ is a generalized polytope if there is a convex polytope H and a transformation (H, f) such that $\operatorname{Range}(f) = E$. F is a face of E if G is a face of H such that $\operatorname{Range}(f|_G) = F$.

Reference Elements

Part of $\Theta_{simplex,3}$

- Reference elements are standard convex polytopes.
- \bullet $\Theta_{d,t}$ is the *d*-dimensional reference element of type t.
- The polytope and all its faces are entities: $R_{d,t} = \{t_0, t_0, \dots, v_3\}.$
- $\tau: R_{d,t} \rightarrow$ "types", $c: R_{d,t} \rightarrow \{0,\ldots,d\}$.
- $\mathcal{H}_{d,t} \subset R_{d,t} \times R_{d,t}$: $(r,r') \in \mathcal{H}_{d,t}$ iff r'subentity (part of) of r.
- Local numbering of subentities w.r.t. containing entity.
- Recursive construction over dimension. via isomorphic edge-weighted graphs.
- Positions: $\pi: R_{d,t} \to \mathbb{R}^d$.

DUNE Bastian (IWR Heidelberg) 1.7.2005 13 / 37

- A grid consists of generalized polytopes.
- A (hierarchic) grid has a dimension d, a world dimension w and maximum level J.
- Entity set: $E = \bigcup_{j \in \mathcal{J}} \bigcup_{c \in \mathcal{C}} E_j^c$, where $\mathcal{J} = \{0, \dots, J\}, \mathcal{C} = \{0, \dots, d\}$.
- Every $e \in E$ is a generalized polytope with associated polytope $\Theta_{d-c(e),\tau(e)}$.
- $\mathcal{S} \subset E \times E$: $(e, e') \in \mathcal{S}$ iff e' subentity of e. Then c(e') > c(e) and j(e') = j(e).
- Exact subentity relation can be deduced from reference element.
- For $e \in E$, $(\Omega(\Theta_{d-c(e),\tau(e)}), f_e)$ maps reference element to e.

Nested Grid Refinement

- Grid refinement is always logically nested.
- $\mathcal{F} \subset E \times E$: $(e, e') \in \mathcal{F}$ iff e is obtained from refinement of e'.
- \bullet \mathcal{F} includes all codims.
- $\bullet \ e \in E, c(e) = 0, (e, e') \in \mathcal{F}:$ $g_{e,e'} : \Omega(\Theta_{d,\tau(e)}) \to \Omega(\Theta_{d,\tau(e')})$

- Allows evaluation of coarse grid function on the fine mesh.
- Does not imply $\Omega(e) \subseteq \Omega(e')$.
- Leaf entities: $L = \{e' \in E \mid \neg \exists e \in E : (e, e' \in F)\}.$
- Copy relation: $\mathcal{Y} \subset E \times E$: $(e, e') \in \mathcal{Y}$ iff e is a copy of e'.
- \bullet \mathcal{Y} is transitive.
- Copies may only be copied.

Intersections

• Intersection $\lambda = (e, e', \epsilon, \epsilon', \theta, m_g, m_l, m'_l)$: $e, e' \in E^0, \epsilon, \epsilon' \in E^1, \theta$: reference element.

 $m_g: \Omega(\theta) \to \mathbb{R}^w, \ m_l: \Omega(\theta) \to \Omega(\Theta_{d,\tau(e)}),$

 $m_l: \Omega(\theta) \to \Omega(\Theta_{d,\tau(e)}), \\ m_l': \Omega(\theta) \to \Omega(\Theta_{d,\tau(e')}).$

- For e_3 : $(e_3, e_1, ...)$, $(e_3, e_4, ...)$, for e_2 : $(e_2, e_1, ...)$, $(e_2, e_7, ...)$.
- Handles nonconforming meshes and nonconforming refinement.
- 3D : There might be several intersections per face.
- Internal and external boundaries handled similarly.

Parallel Data Decomposition

- Grid is mapped to $\mathcal{P} = \{0, \dots, P-1\}$.
- $E = \bigcup_{p \in \mathcal{P}} E|_p$ possibly overlapping.
- $\pi_p : E|_p \to$ "partition type".
- For codimension 0 there are three partition types:
 - interior: Nonoverlapping decomposition.
 - overlap: Arbitrary size.
 - ghost: Rest.
- For codimension > 0 there are two additional types:
 - border: Boundary of interior.
 - front: Boundary of interior+overlap.
- Allows implementation of overlapping and nonoverlapping DD methods.

Indices and Ids

- In FE computations data is associated with subsets of entities $E' \subseteq E$.
- Subsets could be "vertices of level I", "faces of leaf elements", ...
- Data should be stored in arrays for efficiency.
- Associate index/id with each entity.
- Leaf index: $\operatorname{leaf}_p^c: E|_p \cap L \cap E^c \to \{0, \dots, N_p^c 1\}$, zero-starting, consecutive, non-persistent, accessible on copies. Used to store solution and stiffness matrix.
- Level index: level $_{j,p}^c$: $E|_p \cap E_j^c \to \{0,\ldots,M_{j,p}^c-1\}$, zero-starting, consecutive, non-persistent. Used for geometric multigrid.
- Globally unique id: id: $E \to \mathbb{N}_0$, persistent across grid modifications. Used to transfer solution from one grid to another.
- Mappers use indices/ids to access data associated with a grid.

Outline

- The Concept
- Abstract Description of Grids
 - Preliminaries
 - Reference Elements
 - Grids
- Interface Implementation
 - Classes
 - Example
- Application to Linear Algebra and Solvers
 - Expressing Structure in FE Matrices
 - Performance
- 6 Conclusions

- Grid<d, w> is a container of entities.
- Template parameters are dimension and world dimension (if supported by underlying implementation).
- View Model: Read-only access to grid entities, consequent use of const.
- Access to entities is only through iterators. Allows on-the-fly implementations.
- Traits classes: Grid exports the types of its constituents.
- Several instances of a grid with different dimension and implementation can coexist in a single program.
- Available implementations: SGrid (structured, n-dimensional), YaspGrid (structured, parallel, n-dimensional), AlbertaGrid (1D/2D/3D, unstructured, simplex, bisection), UGGrid (2D/3D, unstructured, parallel, multi-element), ALU3DGrid (3D, unstructured, tet/hex, parallel).
- In preparation: Networks (1D in *n*-D).

Entity/Geometry

- Entity<c, d> is the entity of codimension *c* in *d* dimensions.
- Contains topological information about entity, geometry is in seperate class.
- Specializations for codimension 0 and d.
- Codimension 0 provides subentity and father relations as well as intersections.
- Geometry<c, d, w> is a transformation (Θ, f) from a reference element to the entity.
- It provides Jacobian, its inverse and tangential vectors.

Iterators

- LeafIterator<d> iterates over codimension 0 leaf entities in a process. Begin is on the grid.
- LevelIterator<c, d> iterates over codimension c entities on a given level in a process. Begin is on the grid.
- IntersectionIterator<d>: iterate over intersections of a single codimension 0 entity. Begin is on the codimension 0 entity.
- HierarchicIterator<d>: iterate over all childs of a codimension 0 entity. Begin is on the codimension 0 entity.
- Specializations for different partition types exist.

Example: L_2 interpolation error for conforming FE

```
template < class G, class Functor>
double L2Error (G& grid, Functor f, int k, int p) { // polynomial order k, quadrature order p
 const int dim = G::dimension:
 const int dimworld = G::dimensionworld;
 typedef typename G::ctype ct;
 typedef typename G::Traits::LeafIterator LeafIterator;
 double sum = 0.0;
  LeafIterator eendit = grid.leafend(grid.maxlevel());
  for (LeafIterator it = grid.leafbegin(grid.maxlevel()); it!=eendit; ++it) {
    Dune::GeometryType at = it->geometry().type();
    double coefficients[Dune::LagrangeShapeFunctionSetContainer<ct, double, dim>::maxsize];
    for (int j=0; j<Dune::LagrangeShapeFunctions<ct, double, dim>::general(gt,k).size(); j++)
      coefficients[j] = f(it->geometry().global(
        Dune::LagrangeShapeFunctions<ct, double, dim>::general(gt,k)[j].position()));
    for (int i=0; i<Dune::QuadratureRules<ct,dim>::rule(qt,p).size(); ++i) {
     const Dune::FieldVector<ct,dim>&
        ippos = Dune::OuadratureRules<ct.dim>::rule(gt.p)[i].position();
     double exact = f(it->geometry().global(ippos));
     double approx = 0;
      for (int j=0; j<Dune::LagrangeShapeFunctions<ct.double.dim>::general(gt,k).size(); j++)
        approx += coefficients[j]*Dune::LagrangeShapeFunctions<ct, double, dim>::
                  general(gt,k)[j].evaluateFunction(0,ippos);
     double weight = Dune::QuadratureRules<ct, dim>::rule(qt,p)[i].weight();
      double refvolume = Dune::ReferenceElements<ct,dim>::general(gt).volume();
     double detjac = it->geometry().integrationElement(ippos);
      sum += (exact-approx)*(exact-approx)*weight*refvolume*detjac;
  return sqrt(sum);
```

Performance Evaluation

- Consider Run-time for computing FE interpolation error for polynomial degree 1 and quadrature order 2.
- Same algorithm runs on YaspGrid and UGGrid

Grid	d	Туре	Elements	Time [s]
UGGrid	2	simplex	131072	0.49
UGGrid	2	cube	65536	0.19
YaspGrid	2	cube	65536	0.09
UGGrid	3	cube	32768	0.19
YaspGrid	3	cube	32768	0.12

- First results thanks to S. Kuttanikkad and O. Sander!
- YaspGrid is on-the-fly compared to UGGrid.
- Basis functions are not cached.

Outline

- The Concept
- Abstract Description of Grids
 - Preliminaries
 - Reference Elements
 - Grids
- Interface Implementation
 - Classes
 - Example
- Application to Linear Algebra and Solvers
 - Expressing Structure in FE Matrices
 - Performance
- Conclusions

Iterative Solver Template Library

- There are already template libraries for linear algebra: MTL/ITL
- Existing libraries cannot efficiently use (small) structure of FE-Matrices
- Solver components: Based on operator concept, Krylov methods, (A)MG preconditioners
- Generic kernels: Triangular solves, Gauß-Seidel step, ILU decomposition
- Matrix-Vector Interface: Support recursively block structured matrices
- Various implementations of the interface are available

Block Structure in FE Matrices

sparse block matrix blocks are dense blocks have fixed size DG fixed p

blocks are sparse

diffusionreaction systems

blocks are dense blocks have variable size DG hp version

2x2 block matrix

each block is sparse

Taylor-Hood elements

Example Definitions

 A vector containing 20 blocks where each block contains two complex numbers using double for each component:

```
typedef FieldVector<complex<double>, 2> MyBlock;
BlockVector<MyBlock> x(20);
x[3][1] = complex<double>(1,-1);
```

 A sparse matrix consisting of sparse matrices having scalar entries:

```
typedef FieldMatrix<double,1,1> DenseBlock;
typedef BCRSMatrix<DenseBlock> SparseBlock;
typedef BCRSMatrix<SparseBlock> Matrix;
Matrix A(10,10,40,Matrix::row_wise);
... // fill matrix
A[1][1][3][4][0][0] = 3.14;
```

Vector-Matrix Interface

- Vector
 - Is a one-dimensional container
 - Sequential access
 - Random access
 - Vector space operations: Addition, scaling
 - Scalar product
 - Various norms
 - Sizes

Matrix

- Is a two-dimensional container
- Sequential access using iterators
- Random access
- Organization is row-wise
- Mappings y = y + Ax; $y = v + A^Tx$; $v = v + A^Hx$;
- Solve, inverse, left multiplication
- Various norms
- Sizes

Performance I

- Pentium 4 Mobile 2.4 GHz: Stream for $x = y + \alpha z$ is 1084 MB/s
- Compiler: GNU C++ compiler version 4.0
- Scalar product of two vectors (block size 1)

N	500	5000	50000	500000	5000000
MFLOPS	896	775	167	160	164

• daxpy operation $y = y + \alpha x$, 1200 MB/s transfer rate for large N

N	500	5000	50000	500000	5000000
MFLOPS	936	910	108	103	107

Matrix-vector product, BCRSMatrix, 5-point stencil, b: block size

N, b	100,1	10000,1	1000000,1	1000000,2	1000000,3
MFLOPS	388	140	136	230	260

Example: Generic Gauß-Seidel

```
template<class M, class X, class Y, class K>
static void dbgs (const M& A, X& x, const Y& b, const K& w) {
  typedef typename M::ConstRowIterator rowiterator;
  typedef typename M::ConstColIterator coliterator;
 typedef typename Y::block type bblock;
 typedef typename X::block_type xblock;
  bblock rhs; X xold(x); rowiterator endi=A.end();
  for (rowiterator i=A.begin(); i!=endi; ++i) { // loop over rows
                                                  // initialize rhs
    rhs = b[i.index()];
    coliterator end;=(*i).end();
                                                  // end of row i
    coliterator j=(*i).begin();
                                                  // start of row i
    for (; j.index()<i.index(); ++j)</pre>
                                                // lower triangle
                                                  // minus matrix vector
      (*i).mmv(x[i.index()],rhs);
    coliterator diag=j;
                                                  // remember diagonal
    for (; i!=endi; ++i)
                                                  // upper triangle
                                                  // minus matrix vector
      (*i).mmv(x[i.index()],rhs);
    algmeta_itsteps<I-1>::dbgs(*diag,x[i.index()],rhs,w);//''solve''
                                                  // update with damping
   *= w; x.axpv(1-w,xold);
```

Performance II

- Damped Gauß-Seidel solver
- 5-point stencil on 1000 by 1000 grid
- Comparison of generic implementation in ISTL with specialized C implementation in AMGLIB

	AMGLIB	ISTL
Time per iteration [s]	0.17	0.18

Corresponds to about 150 MFLOPS

Outline

- The Concept
- Abstract Description of Grids
 - Preliminaries
 - Reference Elements
 - Grids
- Interface Implementation
 - Classes
 - Example
- Application to Linear Algebra and Solvers
 - Expressing Structure in FE Matrices
 - Performance
- Conclusions

Conclusions

- DUNE is based on the following principles:
 - Seperation of data structures and algorithms.
 - Implementation through generic programming techniques.
 - Reuse of existing codes.
 - Free software.
- This approach allows for flexibility while not imposing any performance penalty.
- Current plans:
 - Finish grid interface, index/ids, reference elements.
 - Finish version 1.0 including documentation and tutorial.