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0 The Concept
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The Problem with Finite Element Software

@ There are many PDE software packages, each with a particular
set of features:

o |IPARS: block structured, parallel, multiphysics.
o Alberta: simplicial, unstructured, bisection refinement.
o UG: unstructured, multi-element, red-green refinement, parallel.
@ QuocMesh: Fast, on-the-fly structured grids.
@ Using one framework, it
@ might be either impossible have a particular feature,
@ or very inefficient in certain applications.

@ Extension of the feature set is usually hard

Reason: Algorithms are implemented on the basis of a
particular data structure
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Seperate data structures and algorithms.

@ Programming with concepts

o Determine what algorithms require from a data structure to operate
efficiently (“concepts”,’abstract interfaces”)

o Formulate algorithms based on these interfaces

@ Provide different implementations of the interface

Structured grid

Algorithm Mesh

E.g. FE discretization z'r;?rface

Unstructured simplicial grid ‘

\‘{ Unstructured multi-element grid ‘

| et / Compressed Row Storage (CRS) ‘
ncomplete
Decomposition Sparse
Matrix—Vector Block CRS
Algebraic Interface
Multigrid Sparse Block CRS
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Concept I

Implementation with generic programming techniques.

implementation

L

Bastian (IWR Heidelberg)

@ Compile-time selection of data structures
(static polymorphism).

@ Compiler generates code for each
algorithm-data structure combination.

@ All optimizations apply, in particular
function inlining.

@ Allows use of interfaces with fine
granularity.

@ Concept has been around for some time:

@ Standard Template Library (1998):
Containers. Blitz++, MTL/ITL, GTL, ...

@ Thesis of Gundram Berti (2000):
Concepts for grid based algorithms.
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Concept Il

Reuse existing finite element software.

| UG ||Albertal | YaspGrid |

Geometry IF Grld IF

Sparse|——|CRS
Matrix
IF
| Sparse BCRS

User Code
Vlsuallzatlon | Functions & Solvers IF
Operators IF

@ Efficient integration of existing FE software.
@ Developed by groups in Berlin, Freiburg and Heidelberg
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Finite Element Grids

There is great variability in finite element grids:

]
]
]

Structured grid: O(1) memory, transformation might be simple.
Unstructured grid: different element types
Conforming/nonconforming grids

Local mesh refinement: nested r. vs. point insertion, conforming
r. (red/green, bisection) vs. nonconforming r. (hanging nodes).

Grids on manifolds: shells, fractures (2D in 3D), wells, neural
networks (1D in 3D).

Dimension independence: Uniform access to entities of all
codimensions.

Parallel data decomposition: Overlapping, nonoverlapping,
dynamic load balancing.

Coupled grids: Overlapping, nonoverlapping, mortars.
Other issues: Sparse grids, periodicity.
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General Idea

@ Describe a single element:

@ lts hierarchic construction from higher codimensions.
@ Its transformation from a reference element.
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General Idea

@ Describe a single element:

@ lts hierarchic construction from higher codimensions.
@ Its transformation from a reference element.

@ Position of elements relative to each other:
@ On one grid level.
o With respect to different levels.
@ A formal specification of grids is required to enable an accurate
description of the grid interface.
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Preliminaries |

Convex polytope H ¢ R*

@ |s the convex hull of a finite set of points X = {xp, ..., xn}. His a
closed setand H = HU OH.
@ If n=0, then H is a single point {xo}.

@ If n> 0, then let {by,..., by} be a basis of {x; — Xxp, ..., Xn — X0}
dim(H) = d < min(n, w) is the dimension of H.
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@ |s the convex hull of a finite set of points X = {xp, ..., xn}. His a
closed set and H = HU 0H.
@ If n=0, then H is a single point {xo}.

@ If n> 0, then let {by,..., by} be a basis of {x; — Xxp, ..., Xn — X0}
dim(H) = d < min(n, w) is the dimension of H.

Face of a convex polytope

Let H be the polytope generated by the point set X. F is a face of H iff
(i) Fc dH, and
(i) Fis generatedby Y C X.

A face F has dimension 0 < dim(F) < dim(H).
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Preliminaries Il

Codimension of a face

A face F of a polytope H has codimension c iff dim(F) = dim(H) — c.
H itself has codimension 0. Some common names: Facet (¢ = 1),
ridge (¢ = 2), edge (¢ = dim(H) — 1), vertex (¢ = dim(H)).
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ridge (¢ = 2), edge (¢ = dim(H) — 1), vertex (¢ = dim(H)).

Transformation

Let 0 < d < w be integers. (D, f) is a transformation iff
(i) D c R%is a closed, bounded point set, and

(i) fe (C'(D))" is one-to-one.

Generalized polytope

E c R" is a generalized polytope if there is a convex polytope H and a
transformation (H, f) such that Range(f) = E. Fisafaceof Eif Gis a
face of H such that Range(f|g) = F.

| \,

o
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Reference Elements

€o

Vo

V4 Vo

Part Of @SImp[eX,s
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V3

@ Reference elements are standard convex

polytopes.

Oy, is the d-dimensional reference
element of type t.

The polytope and all its faces are entities:
Rd,t = {to, fo, ey Vg}.

7 : Ryt — “types”, ¢: Ry — {0,...,d}.
Hat C Rd,t X Rd’ti (r, I’l) € Hat iff r’
subentity (part of) of r.

Local numbering of subentities

w.r.t. containing entity.

Recursive construction over dimension
via isomorphic edge-weighted graphs.
Positions: 7 : Ry — RY.

DUNE 1.7.2005 13/37



@ A grid consists of generalized polytopes.
@ A (hierarchic) grid has a dimension d, a
world dimension w and maximum level J.
o Entity set: E = jc 7 Ucec Ef, Where
J =A0,...,J},Cc=H{0,...,d}.
@ Every e € E is a generalized polytope
with associated polytope ©y_c(e),r(e)-
@ SC E x E: (e, €) € Siff € subentity of

e e. Then c(€') > c(e) and j(€') = j(e).
eegeﬂ 8 @ Exact subentity relation can be deduced
571 Ve from reference element.

@ Fore € E, (AOg_c(e),r(e)): fo) Maps

e e
V—O_V_O 1 Y0 reference element to e.
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Nested Grid Refinement

@ Grid refinement is always @ Allows evaluation of coarse
logically nested. grid function on the fine mesh.

@ FCEXE:(eé€)e Fiffeis @ Does not imply Q(e) C Q(€).
obtained from refinement of &'. ¢ |eaf entities: L = {¢/ € E |

@ Fincludes all codims. -Jec E: (e € € F}.
@ ecE c(e)=0,(e€)e @ Copy relation: Y C E x E:
e - Oy r(e)) — 2O T(e/)) (e, €) € Yiff eis acopy of €.
, @ @ ) is transitive.
@ Copies may only be copied.

2

V| e
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Intersections

Bastian (IWR Heidelberg)

@ Intersection X = (e, €,¢,¢, 0, mg, m, m;):

e, e cEV ¢ cE',

 : reference element,
mg : Q(0) — RY,

m;: Q(0) — 2Oy r(e)),
m; : Q(@) — Q(@d,T(e’))-

@ Fore;: (es,eq,...),(€3,64,...),for es:

(62, e1,.. .), (eg, e7,.. )

@ Handles nonconforming meshes and

nonconforming refinement.

@ 3D : There might be several intersections

per face.

@ Internal and external boundaries handled

similarly.
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Parallel Data Decomposition

T
-
-
|

—
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@ Grid is mappedto P ={0,...,P—1}.
@ E = pep Elp possibly overlapping.
@ 7, : E|p, — “partition type”.
@ For codimension 0 there are three partition
types:
@ interior: Nonoverlapping decomposition.

@ overlap: Arbitrary size.
@ ghost: Rest.

@ For codimension > 0 there are two additional

types:
@ border: Boundary of interior.
@ front: Boundary of interior+overlap.

@ Allows implementation of overlapping and

nonoverlapping DD methods.
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Indices and Ids

@ In FE computations data is associated with subsets of entities
E' CE.

Subsets could be “vertices of level I”, “faces of leaf elements”,
Data should be stored in arrays for efficiency.

Associate index/id with each entity.

Leaf index: leafy : E|p N LN E® — {0,..., N5 — 1}, zero-starting,
consecutive, non-persistent, accessible on copies. Used to store
solution and stiffness matrix.

o Level index: leveli, : E|p N Ef — {0,...,M?, — 1}, zero-starting,
consecutive, non- perS|stent Used for geometrlc multigrid.

@ Globally unique id: id : E — Ny, persistent across grid
modifications. Used to transfer solution from one grid to another.

@ Mappers use indices/ids to access data associated with a grid.
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9 Interface Implementation
@ Classes
@ Example

Bastian (IWR Heidelberg) DUNE 1.7.2005 19/37



(*)]

o
o

(*]

Grid<d, w> is a container of entities.

Template parameters are dimension and world dimension (if
supported by underlying implementation).

View Model: Read-only access to grid entities, consequent use of
const.

Access to entities is only through iterators. Allows on-the-fly
implementations.

Traits classes: Grid exports the types of its constituents.
Several instances of a grid with different dimension and
implementation can coexist in a single program.

Available implementations: sGrid (structured, n-dimensional),
YaspGrid (structured, parallel, n-dimensional), AlbertaGrid
(1D/2D/3D, unstructured, simplex, bisection), UGGrid (2D/3D,
unstructured, parallel, multi-element), ALU3DGrid (3D,
unstructured, tet/hex, parallel).

In preparation: Networks (1D in n-D).
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Entity/Geometry

® Entity<c, d> is the entity of codimension ¢ in d dimensions.

@ Contains topological information about entity, geometry is in
seperate class.

@ Specializations for codimension 0 and d.

@ Codimension 0 provides subentity and father relations as well as
intersections.

® Geometry<c,d, w> is a transformation (O, f) from a reference
element to the entity.

@ It provides Jacobian, its inverse and tangential vectors.
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lterators

@ LeafIterator<d> iterates over codimension O leaf entities in a
process. Begin is on the grid.

@ LevelIterator<c,d> iterates over codimension c¢ entities on a
given level in a process. Begin is on the grid.

® IntersectionlIterator<d>: iterate over intersections of a
single codimension 0 entity. Begin is on the codimension 0 entity.

® HierarchicIterator<d>: iterate over all childs of a
codimension 0 entity. Begin is on the codimension 0 entity.

@ Specializations for different partition types exist.
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Example: L, interpolation error for conforming FE

template<class G, class Functor>
double L2Error (G& grid, Functor £, int k, int p) { // polynomial order k, quadrature order p
const int dim = G::dimension;
const int dimworld = G::dimensionworld;
typedef typename G::ctype ct;
typedef typename G::Traits::Leaflterator Leaflterator;

double sum = 0.0;

LeafIterator eendit = grid.leafend(grid.maxlevel());

for (LeaflIterator it = grid.leafbegin(grid.maxlevel()); it!=eendit; ++it) {
Dune: :GeometryType gt = it->geometry().type();
double coefficients[Dune::LagrangeShapeFunctionSetContainer<ct,double,dim>::maxsize];
for (int j=0; j<Dune::LagrangeShapeFunctions<ct,double,dim>::general(gt,k).size(); J++)

coefficients[j] = f(it->geometry().global(
Dune: :LagrangeShapeFunctions<ct,double, dim>: :general (gt, k) [j] .position()));
for (int i=0; i<Dune::QuadratureRules<ct,dim>::rule(gt,p).size(); ++i) {
const Dune::FieldVector<ct,dim>&
ippos = Dune::QuadratureRules<ct,dim>::rule(gt,p) [i].position();

double exact = f(it->geometry().global (ippos));
double approx = 0;
for (int j=0; j<Dune::LagrangeShapeFunctions<ct,double,dim>::general (gt,k).size(); j++)
approx += coefficients[j]*Dune::LagrangeShapeFunctions<ct, double,dim>::
general (gt, k) [j] .evaluateFunction (0, ippos) ;
double weight = Dune::QuadratureRules<ct,dim>::rule(gt,p) [i].weight();
double refvolume = Dune::ReferenceElements<ct,dim>::general (gt).volume();
double detjac = it->geometry().integrationElement (ippos) ;
sum += (exact-approx)* (exact-approx)*weight*refvolume*detjac;

}

return sqgrt (sum);
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Performance Evaluation

@ Consider Run-time for computing FE interpolation error for
polynomial degree 1 and quadrature order 2.

@ Same algorithm runs on YaspGrid and UGGrid

Grid d Type Elements Time [s]
UGGrid 2 simplex 131072 0.49
UGGrid 2 cube 65536 0.19
YaspGrid 2 cube 65536 0.09
UGGrid 3 cube 32768 0.19
YaspGrid 3 cube 32768 0.12

@ First results thanks to S. Kuttanikkad and O. Sander!
® YaspGrid is on-the-fly compared to UGGrid.
@ Basis functions are not cached.
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@ Application to Linear Algebra and Solvers
@ Expressing Structure in FE Matrices
@ Performance
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lterative Solver Template Library

Solver components @ There are already template libraries for linear
algebra: MTL/ITL
| @ Existing libraries cannot efficiently use
generic kernels (small) structure of FE-Matrices
for iterative @ Solver components: Based on operator
methods
concept, Krylov methods, (A)MG
i preconditioners
Matrix-Vector @ Generic kernels: Triangular solves,
Interface GauB-Seidel step, ILU decomposition
/ l \ @ Matrix-Vector Interface: Support recursively
block structured matrices

@ Various implementations of the interface are
available
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Block Structure in FE Matrices

j:t j:t sparse block H blocks are
NN ﬁ matrix +H sparse
M blocks are T
} } :3:7'» dense ‘ diffusion-
j:t mma blocks have 1 reaction
K fixed size systems
T .
EanE © | DGfixedp
e SRR 2x2 block
# blocks are = ++ H H matrix
dense ++ H ++ =1l each block
blO?kS ha\_/e in i, H is sparse
# variable size ‘+‘ — T =~ Taylor-Hood
] DG hp version S elements
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Example Definitions

@ A vector containing 20 blocks where each block contains two
complex numbers using double for each component:

typedef FieldVector<complex<double>, 2> MyBlock;
BlockVector<MyBlock> x(20);
x[3][1] = complex<double>(1l,-1);

@ A sparse matrix consisting of sparse matrices having scalar
entries:

typedef FieldMatrix<double,1l,1> DenseBlock;
typedef BCRSMatrix<DenseBlock> SparseBlock;
typedef BCRSMatrix<SparseBlock> Matrix;
Matrix A(10,10,40,Matrix::row_wise);

// fill matrix
A[1][1][3][4][0][0] = 3.14;
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Vector-Matrix Interface

@ Vector @ Matrix
@ Is a one-dimensional @ Is a two-dimensional
container container
@ Sequential access @ Sequential access using
@ Random access iterators
@ Vector space operations: @ Random access
Addition, scaling @ Organization is row-wise
@ Scalar product @ Mappingsy =y +Ax;y =
@ Various norms y+ATx;y =y + Allx;
@ Sizes @ Solve, inverse, left
multiplication
@ Various norms
@ Sizes
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Performance |

@ Pentium 4 Mobile 2.4 GHz: Stream for x = y + az is 1084 MB/s
@ Compiler: GNU C++ compiler version 4.0
@ Scalar product of two vectors (block size 1)

N 500 5000 50000 500000 5000000
MFLOPS 896 775 167 160 164
@ daxpy operation y = y + ax, 1200 MB/s transfer rate for large N
N 500 5000 50000 500000 5000000
MFLOPS 936 910 108 103 107
@ Matrix-vector product, BCRSMatrix, 5-point stencil, b: block size
N,b 100,1 10000,1 1000000,1 1000000,2 1000000,3
MFLOPS 388 140 136 230 260
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Example: Generic GauB-Seidel

template<class M, class X, class Y, class K>
static void dbgs (const M& A, X& x, const Y& b, const K& w) {
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstCollIterator coliterator;
typedef typename Y::block_type bblock;
typedef typename X::block_type xblock;
bblock rhs; X xold(x); rowiterator endi=A.end();

for (rowiterator i=A.begin(); i!=endi; ++i) { // loop over rows

rhs = b[i.index()]; // initialize rhs
coliterator endj=(*i).end(); // end of row i
coliterator j=(*i).begin(); // start of row i
for (; j.index()<i.index(); ++7) // lower triangle

(*5) .mmv (x[j.index ()], rhs); // minus matrix vector
coliterator diag=7j; // remember diagonal
for (; jl!=endj; ++3) // upper triangle

(*j) .mmv(x[j.index ()], rhs); // minus matrix vector

algmeta_itsteps<I-1>::dbgs(*diag,x[i.index()],rhs,w);// ’solve’’
}
X *= w; x.axpy(l-w,xold); // update with damping
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Performance |l

@ Damped GauB-Seidel solver
@ 5-point stencil on 1000 by 1000 grid

@ Comparison of generic implementation in ISTL with specialized C
implementation in AMGLIB

AMGLIB ISTL
Time per iteration [s] 0.17 0.18

@ Corresponds to about 150 MFLOPS

Bastian (IWR Heidelberg) DUNE 1.7.2005 35/37



9 Conclusions
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Conclusions

@ DUNE is based on the following principles:
o Seperation of data structures and algorithms.
@ Implementation through generic programming techniques.
@ Reuse of existing codes.
o Free software.
@ This approach allows for flexibility while not imposing any
performance penalty.
@ Current plans:

o Finish grid interface, index/ids, reference elements.
@ Finish version 1.0 including documentation and tutorial.
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