
DUNE —
Distributed and Uni�ed Numerics Environment

Christian Engwer

Interdisciplinary Center for Scienti�c Computing, Univer sity of Heidelberg

February 23, 2006

Joint work with:

P. Bastian M. Blatt R. Klöfkorn S. Kuttanikkad T. Neubauer M. Ohlberger O. Sander

Christian.Engwer@iwr.uni-heidelberg.de http://dune.uni-hd.de/

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 1 / 17

http://dune.uni-hd.de/


The Problem with Finite Element Software

� There are many PDE software packages, each with a particular
set of features:

� IPARS: block structured, parallel, multiphysics.
� Alberta: simplicial, unstructured, bisection re�nement.
� UG: unstructured, multi-element, red-green re�nement, pa rallel.
� QuocMesh: Fast, on-the-�y structured grids.

� Using one framework, it might be
� either impossible have a particular feature,
� or very inef�cient in certain applications.

� Extension of the feature set is usually hard

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 2 / 17



Outline

Outline

1 The Concept

2 Abstract Grid Interface
Grid
Entities
Iterators
Parallel Data Decomposition
Indices and Ids
Available Implementations

3 Performance Evaluation

4 Conclusions

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 3 / 17



The Concept

Concept I
Seperate data structures and algorithms.

� Programming with concepts
� Determine what algorithms require from a data structure to operate

ef�ciently (“concepts”,”abstract interfaces”)
� Formulate algorithms based on these interfaces
� Provide different implementations of the interface

Mesh
Interface
(IF)E.g. FE discretization

Algorithm

Structured grid

Unstructured simplicial grid

Unstructured multi-element grid

Incomplete 
Decomposition

Algebraic
Multigrid

Sparse
Matrix-Vector
Interface

Compressed Row Storage (CRS)

Block CRS

Sparse Block CRS

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 4 / 17



The Concept

Concept II
Implementation with generic programming techniques.

algorithm

implementation

� Compile-time selection of data structures
(static polymorphism).

� Compiler generates code for each
algorithm-data structure combination.

� All optimizations apply, in particular
function inlining.

� Allows use of interfaces with �ne
granularity.

� Concept is known for some time:
� Standard Template Library (1998):

Containers. Blitz++, MTL/ITL, GTL, . . .
� Thesis of Gundram Berti (2000):

Concepts for grid based algorithms.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 5 / 17



The Concept

Concept III
Reuse existing �nite element software.

Grid IF

CRS

Block-CRS

ALU3dGrid

Grape DX

UG

Sparse BCRS

YaspGridAlberta

Geometry IF

Visualization IF Functions &
Operators IF

Solvers IF

Sparse
Matrix
Vector 
IF

VTK

User Code

� Ef�cient integration of existing FE software.

� Developed by groups in Berlin, Freiburg and Heidelberg

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 6 / 17



Abstract Grid Interface

Finite Element Grids

structured
conforming non conforming

nested, 1D

red-green, bisektion manifolds

parallel data decomposition

periodic

mixed dimensions

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 7 / 17



Abstract Grid Interface Grid

Grid

+ +

Hierarchic Grid

Entity codim=0

Entity codim=1

Entity codim=2

Entity codim=3

� A (hierarchic) grid has a dimension d, a
world dimension w and maximum level J.

� A grid is a Container of entities
(geometrical/topologocal objects) of
different codimensions.

� View Model: Read-only access to grid
entities, consequent use of const .

� Access to entities is only through iterators.
Allows on-the-�y implementations.

� Several instances of a grid with different
dimension and implementation can coexist
in a single program.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 8 / 17



Abstract Grid Interface Entities

Entities

�

�

TE

E


̂

x

y

Mapping from 
̂ into global coordinates.

E0

TE0


̂
cube

Position in father

E

TE


̂
simplex

� Entity E is de�ned by. . .
� Reference Element 
̂

� Describes all topological information.
� Can be recursively constructed over

dimension.
� Transformation TE

� Maps from the reference element into
global coordinates.

� Provides Jacobian, its inverse and
tangential vectors.

� Entity of Codimension 0 provides. . .
� subentity and father relations.
� intersections with neighbours and

boundary.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 9 / 17



Abstract Grid Interface Iterators

Iterators

(maxlevel l)

Grid (level l-1)

Grid (level l+1)

Grid (level )

HierarchicIterator H

LevelIterator L(level l-1)

LevelIterator L(level l+1)

++L ++L

++H

++L ++L ++L

� LeafIterator<d> iterates over
codimension 0 leaf entities in a process.
Begin is on the grid.

� LevelIterator<c,d> iterates over
codimension c entities on a given level in a
process. Begin is on the grid.

� IntersectionIterator<d> : iterate
over intersections of a single codimension
0 entity. Begin is on the codimension 0
entity.

� HierarchicIterator<d> : iterate over
all childs of a codimension 0 entity. Begin
is on the codimension 0 entity.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 10 / 17



Abstract Grid Interface Parallel Data Decomposition

Parallel Data Decomposition

� Grid is mapped to P = f 0; : : : ; P � 1g.

� Each Entities is present on one or more
processors.

� Each Entities is associated to one “partition
type”.

� partition types:
interior Nonoverlapping decomposition.
overlap Arbitrary size.
ghost Rest.
border Boundary of interior. (not for cd=0)
front Boundary of interior+overlap. (not for cd=0)

� Allows implementation of overlapping and
nonoverlapping Domain Decomposition
methods.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 11 / 17



Abstract Grid Interface Indices and Ids

Indices and Ids

� Allow association of FE computations data with subsets of entities.

� Subsets could be “vertices of level l”, “faces of leaf elements”, . . .

� Data should be stored in arrays for ef�ciency.

� Associate index/id with each entity.
Leaf index zero-starting, consecutive, non-persistent, accessible

on copies.
Used to store solution and stiffness matrix.

Level index zero-starting, consecutive, non-persistent.
Used for geometric multigrid.

Globally unique id persistent across grid modi�cations.
Used to transfer solution from one grid to another.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 12 / 17



Abstract Grid Interface Available Implementations

Available Implementations

� SGrid (structured, n-dimensional)

� YaspGrid (structured, parallel, n-dimensional)

� AlbertaGrid (1D/2D/3D, unstructured, simplex, bisection)

� OneGrid (adaptive, 1D)

� UGGrid (2D/3D, unstructured, parallel, multi-element)

� ALU3DGrid (3D, unstructured, tet/hex, parallel)

� In preparation: Networks (1D in n-D)

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 13 / 17



Performance Evaluation

Performance of Grid Interface

� Consider Run-time for computing FE interpolation error for
polynomial degree 1 and quadrature order 2.

� Same algorithm runs on YaspGrid and UGGrid

Grid d Type Elements Time [s]
UGGrid 2 simplex 131072 0.49
UGGrid 2 cube 65536 0.19
YaspGrid 2 cube 65536 0.09
UGGrid 3 cube 32768 0.19
YaspGrid 3 cube 32768 0.12

� YaspGrid is on-the-�y compared to UGGrid .

� Basis functions are not cached.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 14 / 17



Performance Evaluation

Performance Linear Algebra
Concepts I-III applied to Linear Algebra Interface

� Matrix-Vector performance
� Pentium 4 Mobile 2.4 GHz, Compiler: GNU C++ 4.0
� Stream benchmark for x = y + � z is 1084 MB/s
� Scalar product of two vectors

N 500 5000 50000 500000 5000000
MFLOPS 896 775 167 160 164

� daxpy operation y = y + � x, 1200 MB/s transfer rate for large N
N 500 5000 50000 500000 5000000
MFLOPS 936 910 108 103 107

� Damped Gauß-Seidel solver
� 5-point stencil on 1000 � 1000 grid
� Comparison generic implementation in ISTL with specialized C

implementation in AMGLIB
AMGLIB ISTL

Time per iteration [s] 0.17 0.18
� Corresponds to about 150 MFLOPS

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 15 / 17



Performance Evaluation

Example: Generic Finite Element Discretization

Generic P1 discretization of the Laplace equation. One code runs on
all grids, with arbitrary element type and in arbitrary dimension.

Alberta 2d Alberta 3d ALU3dGrid simplices ALU3dGrid cubes

UGGrid 2d simplices UGGrid 2d cubes UGGrid 3d simplices UGGrid 3d cubes

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 16 / 17



Conclusions

Conclusions

� DUNE is based on the following principles:
� Seperation of data structures and algorithms.
� Implementation through generic programming techniques.
� Reuse of existing codes.
� Free software.

� This approach allows for �exibility while not imposing any
performance penalty.

� Current plans:
� Finish grid interface, index/ids, reference elements.
� Finish version 1.0 including documentation and tutorial.

Distributed and Unified Numerics Environment
http://dune.uni-hd.de/

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 17 / 17


	Outline
	The Concept
	Abstract Grid Interface
	Grid
	Entities
	Iterators
	Parallel Data Decomposition
	Indices and Ids
	Available Implementations

	Performance Evaluation

