DUNE —
Distributed and Unified Numerics Environment

Christian Engwer

Interdisciplinary Center for Scientific Computing, University of Heidelberg

February 23, 2006

Joint work with:

P. Bastian M. Blatt R. Kléfkorn S. Kuttanikkad T. Neubauer M. Ohlberger 0. Sander

Christian.Engwer@iwr.uni-heidelberg.de http://dune.uni-hd.de/

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 1/17

http://dune.uni-hd.de/

The Problem with Finite Element Software

e There are many PDE software packages, each with a particular
set of features:

IPARS: block structured, parallel, multiphysics.

Alberta: simplicial, unstructured, bisection refinement.

UG: unstructured, multi-element, red-green refinement, parallel.

QuocMesh: Fast, on-the-fly structured grids.

e Using one framework, it might be

e either impossible have a particular feature,
e or very inefficient in certain applications.

e Extension of the feature set is usually hard

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 2/17

Outline

Outline

@ The Concept

® Abstract Grid Interface
Grid
Entities
Iterators
Parallel Data Decomposition
Indices and Ids
Available Implementations

® Performance Evaluation

@ Conclusions

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 3/17

The Concept

Concept |

Seperate data structures and algorithms.

e Programming with concepts

e Determine what algorithms require from a data structure to operate
efficiently (“concepts”,"abstract interfaces”)

e Formulate algorithms based on these interfaces
¢ Provide different implementations of the interface

Structured grid
Algorithm Mesh

E.g. FE discretization Interface 4—{ Unstructured simplicial grid ‘

(IF)
\ Unstructured multi-element grid ‘

Compressed Row Storage (CRS) ‘
Incomplete
Decomposition Sparse
Matrix-Vector Block CRS
Algebraic Interface
Multigrid Sparse Block CRS

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 4/17

The Concept

Concept Il

Implementation with generic programming techniques.

o Compile-time selection of data structures
(static polymorphism).

e Compiler generates code for each
algorithm-data structure combination.

o All optimizations apply, in particular
function inlining.

¢ Allows use of interfaces with fine
granularity.

e Conceptis known for some time:

e Standard Template Library (1998):

L Containers. Blitz++, MTLATL, GTL, ...

e Thesis of Gundram Berti (2000):
Concepts for grid based algorithms.

implementation

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 5/17

The Concept

Concept llI

Reuse existing finite element software.

ALU3dGrid

| UG |[Alberta |[YaspGrid |

Geometry IF Grid IF

User Code

Visualization IF Functions & Solvers IF
Operators IF

o Efficient integration of existing FE software.
e Developed by groups in Berlin, Freiburg and Heidelberg

Sparse ‘>

Matrix

Vector || Block-CRS
IF

> " Sparse BCRS

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 6/17

Abstract Grid Interface

Finite Element Grids

conforming ;

structured non conforming
VALY, s
nested, 1D
red-green, bisektion manifolds
>
7
periodic 7
'

parallel data decomposition mixed dimensions

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 7117

Abstract Grid Interface Grid

A

Hierarchic Grid

Entity codim=0

Entity codim=1

o>

Entity codim=2
/‘/

*<«— Entity codim=3

Christian Engwer (IWR, Heidelberg)

A (hierarchic) grid has a dimension d, a
world dimension w and maximum level J.

A grid is a Container of entities
(geometrical/topologocal objects) of
different codimensions.

View Model: Read-only access to grid
entities, consequent use of const .
Access to entities is only through iterators.
Allows on-the-fly implementations.

Several instances of a grid with different
dimension and implementation can coexist
in a single program.

DUNE February 23, 2006 8/17

Abstract Grid Interface Entities

Entities

o Entity E is defined by. ..

T N Reference Element
e Describes all topological information.
e Can be recursively constructed over
x ¢ dimension.
Mapping from €2 into global coordinates. .
e Transformation Tg

e Maps from the reference element into
global coordinates.
e Provides Jacobian, its inverse and
V tangential vectors.

fre o Entity of Codimension O provides. ..
Position in father e subentity and father relations.
Qe e intersections with neighbours and
boundary.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006

9/17

Abstract Grid Interface Iterators

Iterators

e Leaf |t er at or <d> iterates over
codimension O leaf entities in a process.
Begin is on the grid.
e Level | t er at or<c, d> iterates over
Levtsr (o) codimension ¢ entities on a given level in a

Grid (level I-1) T T S R

et process. Begin is on the grid.

Seterh A e I ntersectionlterator<d>: iterate
Sty ,\\ — over intersections of a single codimension

— N -
Levellterator L(ievel 1+1) L. e

0 entity. Begin is on the codimension 0
entity.

e Hi erarchiclterat or<d>: iterate over
all childs of a codimension 0 entity. Begin
is on the codimension 0 entity.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 10/ 17

Abstract Grid Interface Parallel Data Decomposition

Parallel Data Decomposition

e Grid is mappedto P = {0,...,P — 1}.
e Each Entities is present on one or more
processors.

e Each Entities is associated to one “partition
° ° ° ° ° P — type”.

© | e partition types:

1 interior Nonoverlapping decomposition.
— overlap Arbitrary size.

- 4 Rest.

* *‘ border = Boundary of interior. (not for cd=0)
‘ front Boundary of interior+overlap. (not for cd=0)
| ¢ Allows implementation of overlapping and

I L‘ nonoverlapping Domain Decomposition
methods.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 11/17

Abstract Grid Interface Indices and Ids

Indices and Ids

Allow association of FE computations data with subsets of entities.
Subsets could be “vertices of level I”, “faces of leaf elements”, . ..
Data should be stored in arrays for efficiency.
Associate index/id with each entity.
Leaf index zero-starting, consecutive, non-persistent, accessible
on copies.
Used to store solution and stiffness matrix.
Level index zero-starting, consecutive, non-persistent.
Used for geometric multigrid.
Globally unique id persistent across grid modifications.
Used to transfer solution from one grid to another.

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 12/17

Abstract Grid Interface Available Implementations
Available Implementations :ﬁ#

SGri d (structured, n-dimensional)

YaspGri d (structured, parallel, n-dimensional)

Al bertaGri d (1D/2D/3D, unstructured, simplex, bisection)
OneG'i d (adaptive, 1D)

UGGri d (2D/3D, unstructured, parallel, multi-element)
ALU3DGr i d (3D, unstructured, tet/hex, parallel)

In preparation: Networks (1D in n-D)

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 13/17

Performance Evaluation

Performance of Grid Interface

¢ Consider Run-time for computing FE interpolation error for
polynomial degree 1 and quadrature order 2.

e Same algorithm runs on YaspGri d and UGGr i d

Grid d Type Elements Time [s]
UGk i d 2 simplex 131072 0.49
ucGid 2 cube 65536 0.19
YaspGid 2 cube 65536 0.09
ucGid 3 cube 32768 0.19
YaspGid 3 cube 32768 0.12

e Yasp& i dis on-the-fly compared to UGG i d.
e Basis functions are not cached.

Christian Engwer (IWR, Heidelberg)

DUNE

February 23, 2006

14 /17

Performance Evaluation

Performance Linear Algebra

Concepts I-1ll applied to Linear Algebra Interface

o Matrix-Vector performance
e Pentium 4 Mobile 2.4 GHz, Compiler: GNU C++ 4.0
e Stream benchmark for x =y + az is 1084 MB/s
e Scalar product of two vectors
N 500 5000 50000 500000 5000000
MFLOPS 896 775 167 160 164

e daxpy operationy =y + ax, 1200 MB/s transfer rate for large N

N 500 5000 50000 500000 5000000
MFLOPS 936 910 108 103 107

o Damped Gaul3-Seidel solver
e 5-point stencil on 1000 x 1000 grid
e Comparison generic implementation in ISTL with specialized C
implementation in AMGLIB

AMGLIB ISTL
Time per iteration [s] 0.17 0.18

e Corresponds to about 150 MFLOPS

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 15/17

Performance Evaluation

Example: Generic Finite Element Discretization

Generic P1 discretization of the Laplace equation. One code runs on
all grids, with arbitrary element type and in arbitrary dimension.

\/

\AAVETE
AR
A

Alberta 2d Alberta 3d ALU3dGrid simplices

UGGrid 2d simplices UGGrid 2d cubes

UGGrid 3d simplices

UGGrid 3d cubes
Christian Engwer (IWR, Heidelberg)

DUNE

February 23, 2006 16/17

Conclusions

Conclusions

e DUNE is based on the following principles:

Seperation of data structures and algorithms.
Implementation through generic programming techniques.
Reuse of existing codes.

Free software.

¢ This approach allows for flexibility while not imposing any
performance penalty.
e Current plans:

e Finish grid interface, index/ids, reference elements.
e Finish version 1.0 including documentation and tutorial.

Distributed and Unified Numerics Environnent
http://dune. uni-hd. de/

Christian Engwer (IWR, Heidelberg) DUNE February 23, 2006 17/ 17

http://dune.uni-hd.de/

	Outline
	The Concept
	Abstract Grid Interface
	Grid
	Entities
	Iterators
	Parallel Data Decomposition
	Indices and Ids
	Available Implementations

	Performance Evaluation
	Conclusions

