Massively Parallel DUNE Implementation of Tensor-Product Multigrid Solvers in Geophysical Modelling

Andreas Dedner[†], **Eike Hermann Müller***, Robert Scheichl* (thanks to all DUNE developers, esp. Oliver Sander for help with parallel UG)

†University of Warwick / *University of Bath

DUNE User Meeting, Aachen 25th/26th Sep 2013

PDEs in "flat" geometries in geophysical modelling

Geophysical modelling in "flat" geometries

Numerical results

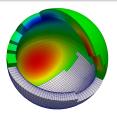
 $R_{earth} \sim 10^4 km \sim \text{Width} \gg \text{Height} \sim 10^2 km (\sim H_{atmos}, H_{ocean})$

Numerical Weather- and Climate- Prediction (NWP)

Solve **elliptic PDE** for global pressure correction with $\gtrsim 10^{10}$ dof at every model time step (and solve it as fast as possible!)

PDEs with similar structure arise in

- Global ocean modelling [Marshall et al (1997), Gerritsen (2006)]
- Subsurface flow simulations
- Oil- and gas reservoir modelling [Lacroix et al (2003)] (supercoarsening multigrid)



⇒ algorithmically optimal & massively parallel solvers

- Tensor product multigrid (TPMG)
 - Elliptic operator and grid structure

Numerical results

- TPMG idea
- DUNE implementation
- Numerical results
 - Case Study I: Idealized flow
 - Case Study II: Aquaplanet
 - Massively parallel scaling on HECToR
- Conclusion and Outlook

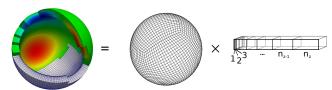
Model equation and grid structure

Elliptic operator for pressure correction π' (see [Wood et al. (2013)])

$$-\omega^{2}\left\{\frac{\alpha^{(r)}(\partial_{r}\pi')+\frac{\partial_{r}\left(\alpha^{(rr)}(\partial_{r}\pi')\right)+\nabla_{2d}\cdot\left(\alpha^{(hh)}(\nabla_{2d}\pi')\right)}{r^{2}}\right\}+\beta\pi'$$

Atmospheric state $\{\boldsymbol{u}, \theta, \pi, \rho\} \Rightarrow \text{profiles } \alpha, \beta$

Tensor product grid



- Semi-structured horizontal grid: cubed sphere, icosahedral,...
- Regular (graded) 1d vertical grid, $n_z = O(100)$
- $R_{\text{earth}}/H \approx 100 \Rightarrow$ Grid-aligned anisotropy $\left(\frac{\Delta x}{\Delta z}\right)^2 \gg 1$

Tensor product multigrid

Grid-aligned anisotropy ⇒ **Tensor product multigrid (TPMG)**

- Geometric multigrid
- Horizontal coarsening only
- Vertical line relaxation (tridiagonal solve)

Optimal for factorising profiles

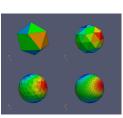
[Börm & Hiptmair Num. Alg., 26:200-1 (1999)]

$$\alpha(\mathbf{r}, \hat{\mathbf{r}}) = \alpha_{\mathbf{r}}(\mathbf{r}) \cdot \alpha_{\mathbf{h}}(\hat{\mathbf{r}})$$



$$\alpha(r, \hat{\mathbf{r}}) \approx \alpha_r(r) \cdot \alpha_h(\hat{\mathbf{r}}) \equiv \alpha^{\otimes}(r, \hat{\mathbf{r}})$$

- Still very efficient as standalone solver (demonstrated for full operational equation in Met Office Unified Model)
- Use factorising $\alpha^{\otimes}(r,\hat{r})$ in **preconditioner** Faster matrix construction as $O(n_{\text{horiz}} + n_z) \ll O(n_{\text{horiz}} \cdot n_z)$ storage



DUNE Implementation

Tensor product multigrid

Matrix-"free" DUNE implementation

- Bespoke geometric multigrid and iterative solvers (DUNE-grid)
- Parallel 2d host grid $\subset \mathbb{R}^3$: ALUGrid(2, 3), UGGrid(3, 3)

Data structures:

- 3d Fields: Store vector of length n_z on each horizontal grid cell
- Matrix: Construct on-the-fly from profiles $\alpha^{(hh)}$, $\alpha^{(rr)}$, $\alpha^{(r)}$, $\beta^{(rr)}$
 - Non-factorising case:
 - 3d fields of size $O(n_{horiz} \cdot n_z)$
 - Pactorising case:
 - Horizontal components = 2d fields of size $O(n_{horiz})$
 - Vertical component = 1d field of size $O(n_z)$

Indirect addressing in horizontal only

 \Rightarrow "Hidden" by work in vertical as $n_7 \gg 1$ [MacDonald et al. (2011)]

Case Study I: Idealized flow

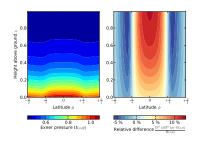
Idealised balanced atmospheric flow field

Only non-factorising ingredient to α , β : Exner pressure π

$$\pi(r, \hat{\mathbf{r}}) = \frac{\epsilon + E_r(r)E_h(\hat{\mathbf{r}})}{1 + \epsilon}$$

$$\pi^{\otimes}(r,\hat{r}) \equiv \frac{\epsilon + E_r(r)}{1 + \epsilon} \cdot E_h(\hat{r})$$

$$\alpha = \alpha^{\otimes}, \beta = \beta^{\otimes} \text{ for } \epsilon = 0$$



Preconditioners

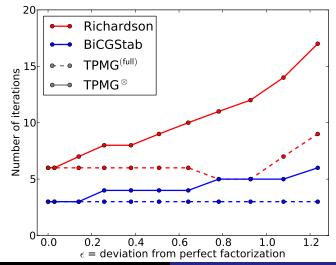
 $SOR_{\rho=1}(2,2)$ V-cycle of TPMG

- Full non-factorizing profiles (TPMG^(full))
- ② Approximately factorized profiles (TPMG[⊗])

Results: Number of iterations

Tensor product multigrid

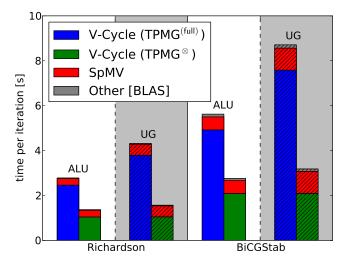
Number of iterations (relative residual reduction = 10^{-5})



Results: Time per iteration

Tensor product multigrid

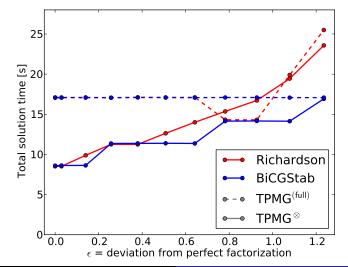
Time per iteration (sequential) for ALUGrid and UGGrid



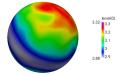
Results: Total solution time

Tensor product multigrid

Total sequential solution time for $2.6 \cdot 10^6$ dof, $n_z = 128$, ALUGrid



Case Study II: Aquaplanet



Tensor product multigrid

Realistic atmospheric testcase

Profiles from "aquaplanet" run with full Unified Model

Preconditioners

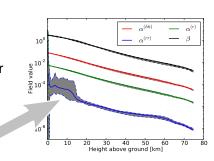
• TPMG^(full): still excellent preconditioner

■ TPMG[⊗]:

Near-surface convection

- $\alpha^{(rr)}$ hard to factorize
- Solver diverges

- factorize $\alpha^{(hh)}$, $\alpha^{(r)}$ and β only
- Performance loss of ≈ 15% in t_{iter} relative to TPMG[⊗].



Tensor product multigrid

Sequential performance, 2.6 · 10⁶ dof, ALUGrid

Time per iteration [s]

Solver	TPMG ^(full)	TPMG ^[⊗]	TPMG [⊗]
Richardson	2.85	1.58	1.37
BiCGStab	5.70	3.19	2.76

Conclusion and Outlook

Number of iterations and total solution time [s]

	# iterations		total time	
Solver	TPMG ^(full)	TPMG ^[⊗]	TPMG ^(full)	TPMG ^[⊗]
Richardson	5	7	14.58	11.37
BiCGStab	3	3	17.43	9.91

Parallel grids

Tensor product multigrid

Parallel grid implementations

Requirements: parallel 2d grid $\subset \mathbb{R}^3$ for unit sphere

- ALUGrid(2, 3)
 - Does not scale!
- UGGrid(3, 3)
 - 2d grid = thin shell
 - Horizontal refinement only
- Other ideas?

UGGrid originally not designed for more than ~ 100 processors ⇒ Fix bugs & plug several memory leaks [Oliver Sander]

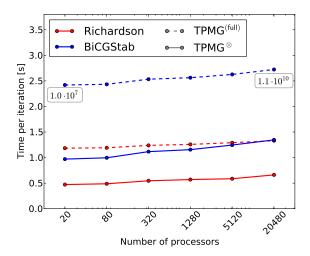
Parallel partitioning

- Read macrogrid with n_{proc} elements from .dgf
- Loadbalance ⇒ one element / processor
- Refine (in horizontal only)

Massively parallel weak scaling

Tensor product multigrid

Weak scaling on HECToR: Case study I (balanced flow), UGGrid



Summary and outlook

Summary

- Geophysical modelling: Elliptic PDEs in "flat" domains
- Tensor product grids: 2d (semi-stuctured) ⊗ 1d
- Tensor-product multigrid solver [Börm and Hiptmair (1999)]
- Matrix-free DUNE implementation based on ALUGrid(2,3) and UGGrid(3, 3)
- Approximate factorisation in preconditioner
- Massively parallel implementation with UGGrid(3,3)

Outlook

- Extend proof in to non-factorising case
- Compare to DUNE-ISTL AMG
- Replace iteration over 2d grid by connectivity lookup tables
- More testing: impact of orography?
- Improve performance, parallel scaling ⇒ UG, ALUGrid?
- (Mimetic) FEM [Cotter and Thuburn (2013)]: $P_0 \mapsto$ higher order DG